КРАТКАЯ ТЕОРИЯ. Важнейший признак жидкости - существование свободной поверхности . Молекулы поверхностного слоя жидкости, имеющего толщину порядка 10 -9 м, находятся в ином состоянии, чем молекулы в толще жидкости. Поверхностный слой оказывает на жидкость давление, называемое молекулярным , что приводит к появлению сил, которые называются силами поверхностного натяжения .

Силы поверхностного натяжения в любой точке поверхности направлены по касательной к ней и по нормали к любому элементу линии, мысленно проведенной на поверхности жидкости. Коэффициент поверхностного натяжения -физическая величина, показывающая силу поверхностного натяжения, действующей на единицу длины линии, разделяющей поверхность жидкости на части:

С другой стороны, поверхностное натяжение можно определить как величину, численно равную свободной энергии единицы поверхностного слоя жидкости. Под свободной энергией понимают ту часть энергии системы, за счет которой может быть совершена работа при изотермическом процессе.

Коэффициент поверхностного натяжения зависит от природы жидкости. Для каждой жидкости он является функцией температуры и зависит от того, какая среда находится над свободной поверхностью жидкости.

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА. Экспериментальная установка изображена на рис. 1. Она состоит из аспиратора А, соединенного с микроманометром М и сосудом В, в котором находится исследуемая жидкость. В аспиратор наливается вода. С помощью крана К аспиратор А может отсоединяться от сосуда В и присоединяться к такому же сосуду С с другой исследуемой жидкостью. Сосуды В и С плотно закрываются резиновыми пробками, имеющими по отверстию. В каждое отверстие вставляется стеклянная трубочка, конец которой представляет собой капилляр. Капилляр погружается на очень малую глубину в жидкость (так, чтобы он только касался поверхности жидкости). Микроманометр измеряет разность давления воздуха в атмосфере и аспираторе, или, что то же самое, в капилляре и сосуде В или С.



Микроманометр состоит из двух сообщающихся сосудов, один из которых представляет собой чашку большого диаметра, а другой наклонную стеклянную трубку малого диаметра (2 - 3 мм) (рис. 2). При достаточно большом отношении площадей сечений чашки и трубки можно пренебречь изменением уровня в чашке. Тогда по уровню жидкости в трубке малого диаметра можно определить измеряемую величину разности давлений:

где - плотность манометрической жидкости; - расстояние принимаемого неизменным уровня жидкости в чашке до уровня в трубке по наклону трубки; - угол, образованный наклонной трубкой с плоскостью горизонта.

В начальный момент времени, когда давление воздуха над поверхностью жидкости в капилляре и сосуде В одинаково и равно атмосферному. Уровень смачивающей жидкости в капилляре выше, чем в сосуде В, а уровень несмачивающей – ниже, так как смачивающая жидкость в капилляре образует вогнутый мениск, а несмачивающая - выпуклый.

Молекулярное давление под выпуклой поверхностью жидкости больше, а под вогнутым - меньше относительно давления под плоской поверхностью. Молекулярное давление, обусловленное кривизной поверхности, принято называть избыточным капиллярным давлением (давление Лапласа) . Избыточное давление под выпуклой поверхностью считается положительным, под вогнутой - отрицательным. Оно всегда направлено к центру кривизны сечения поверхности, т.е. в сторону ее вогнутости. В случае сферической поверхности избыточное давление можно вычислить по формуле:

где - коэффициент поверхностного натяжения, - радиус сферической поверхности.

Смачивающая капилляр жидкость поднимается до тех пор, пока гидростатическое давление столбика жидкости высотой (рис. 3а) не уравновесит избыточного давления, направленного в этом случае вверх. Высота 0 определяется из условия равновесия:

где - ускорение свободного падения, т.е.

Если, повернув кран аспиратора А, медленно выпускать из него воду, то давление воздуха в аспираторе, в соединенных с ним сосуде В и наклонном колене микроманометра начнет уменьшаться. В капилляре же над поверхностью жидкости давление равно атмосферному. В результате увеличивающейся разности давлений мениск жидкости в капилляре будет опускаться, сохраняя кривизну, пока не опустится до нижнего конца капилляра (рис. 3б). В этот момент давление воздуха в капилляре будет равно:

где - давление воздуха в сосуде В, - глубина погружения капилляра в жидкость, - давление Лапласа. Разность давлений воздуха в капилляре и сосуде В равна:

+ р = р изб + ρ g h = 2σ / r + ρ g h

С этого момента начинает меняться кривизна мениска. Давление воздуха в аспираторе и сосуде В продолжает уменьшаться. Так как разность давлений увеличивается, радиус кривизны мениска убывает, а кривизна возрастает. Наступает момент, когда радиус кривизны становится равным внутреннему радиусу капилляра (рис. 3в), а разность давлений становится максимальной. Затем радиус кривизны мениска снова увеличивается, и равновесие будет неустойчивым. Обязуется пузырек воздуха, который отрывается от капилляра и поднимается на поверхность. Жидкость затягивает отверстие. Далее все повторяется. На рис. 4 показано, как меняется радиус кривизны мениска жидкости, начиная с момента, когда он дошел до нижнего конца капилляра.

Из сказанного выше следует, что:

, (1)

где - внутренний радиус капилляра. Эту разность можно определить с помощью микроманометра, так как

где - плотность манометрической жидкости, - максимальное смещение уровня жидкости в наклонной трубке микроманометра, - угол между наклонным коленом микроманометра и горизонталью (см. рис. 2).

Из формул (1) и (2) получим:

. (3)

Так как глубина погружения капилляра в жидкость ничтожна , то ею можно пренебречь, тогда:

или , (4)

где - внутренний диаметр капилляра.

В том случае, когда жидкость не смачивает стенки капилляра, за в формуле (4) принимают внешний диаметр капилляра. В качестве манометрической жидкости в микроманометре используется вода ( = 1×10 3 кг/м 3).

ИЗМЕРЕНИЯ.

1. Налить в аспиратор воду до метки и закрыть его. Добиться равенства давлений в обоих коленах микроманометра, для чего на короткое время извлечь кран К. Установить его в такое положение, в котором он соединяет сосуд с аспиратором.

2. Открыть кран аспиратора настолько, чтобы изменение давления происходило достаточно медленно. Пузырьки воздуха должны отрываться примерно через каждые 10 - 15 с. После установления указанной частоты образования пузырьков можно проводить измерения.

ЗАДАНИЕ. 1. С помощью термометра определить и записать комнатную температуру t .

2. Девять раз определить максимальное смещение уровня жидкости в наклонном колене микроманометра. Для расчета коэффициента поверхностного натяжения взять среднее значение Н ср .

3. Аналогично определить коэффициент поверхностное натяжение этилового спирта.

4. Найти предельные абсолютную и относительную погрешности при определении поверхностного натяжения каждой жидкости. Записать для каждой жидкости окончательные результаты измерений с учетом их точности по формуле.

Ткань можно проткнуть иголкой, но не карандашом (если приложить такое же усилие). Карандаш и игла имеют разную форму и поэтому оказывают на ткань неодинаковое давление. Давление вездесуще. Оно приводит в действие механизмы (см. статью « «). Оно влияет на . оказывают давление на поверхности, с которыми соприкасаются. Атмосферное давление влияет на погоду прибор для измерения атмосферного давления – .

Что такое давление

Когда на тело перпендикулярно к его поверхности действует , то тело оказывается под давлением. Давление зависит от того, насколько велика сила, и от площади поверхности, на которую сила действует. Например, если выйти на снег в обычной обуви, можно провалиться; по этого не произойдет, если мы наденем лыжи. Вес тела один и тот же, но во втором случае давление распределится по большей поверхности. Чем больше поверхность, тем меньше давление. У северного оленя широкие копыта - ведь он ходит на снегу, и давление копыта на снег должно быть как можно меньше. Если нож острый, сила прикладывается к поверхности небольшой площади. Тупой нож распределяет силу по большей поверхности, поэтому и режет хуже. Единица давления - паскаль (Па) - названа в честь французского ученого Блеза Паскаля (1623 - 1662), сделавшего немало открытий в области атмосферного давления.

Давление жидкостей и газов

Жидкости и газы принимают форму сосуда, в котором они содержатся. В отличие от твердых тел, жидкости и газы давят на все стенки со­суда. Давление жидкостей и газов направлено во все сто­роны. давит не только на дно, но и на стенки аквариума. Сам аквариум давит только вниз. давит изнутри на футбольный мяч во всех направлениях, и поэтому мяч круглый.

Гидравлические механизмы

Действие гидравлических механизмов основано на давлении жидкости. Жид­кость не сжимается, поэтому если к ней приложить силу, она будет вынуждена сдвинуться с места. И тормоза работают на гидравлическом принципе. Уменьшение оборотов колее достигается с помощью давления тормозной жидкости. Водитель нажимает на педаль, поршень прокачивает тормозную жидкость через цилиндр, дальше она по трубке поступает в два других цилиндра и давит на поршни. Поршни прижимают тормозные колодки к диску колеса. Возникающее замедляет вращение колеса.

Пневматические механизмы

Пневматические механизмы действуют благодаря давлению газов - как правило, воздуха. В отличие от жид­костей, воздух может сжиматься, и тогда давление его возрастает. Действие отбойного молотка основано на том, что поршень сжимает воздух внутри его до очень большого давления. В отбойном молотке сжатый воздух давит на резец с такой силой, что можно бурить даже камень.

Пеногонный огнетушитель - это пневматическое устройство, работающее на сжатом углекислом газе. Сжав рукоятку, вы высвобождаете находящийся в канистре сжатый углекислый газ. Газ с огромной силой давит вниз, на специальный раствор, вытесняет его в трубку и шланг. Из шланга вырывается струя воды и пены.

Атмосферное давление

Атмосферное давление создастся весом воздуха над поверхностью . На каждый квадратный метр воздух давит с силой большей, чем вес слона. Вблизи поверхности Земли давление выше, чем высоко в небе. На высоте 10 000 метров там, где летают реактивные самолеты, давление невелико, так как сверху давит незначительная воздушная масса. В салоне самолёта поддерживается нормальное атмосферное давление, чтобы люди могли свободно дышать на большой высоте. Но даже в герметичном салоне самолёта у людей закладывает уши, когда давление становится ниже, чем давление внутри ушной раковины.

Атмосферное давление измеряется в миллиметрах ртутного столба. Когда меняется давление, меняется и . Низкое давление означает, что предсто­ит ухудшение погоды. Высокое давле­ние приносит ясную погоду. Нормальное давление на уровне моря – 760 мм (101 300 Па). В дни ураганов оно может упасть до 683 мм (910 Па).

Давление воздуха - сила, с которой воздух давит на земную поверхность. Измеряется в миллиметрах ртутного столба, миллибарах. В среднем она составляет 1,033 г. на 1 см. кв.

Причина, вызывающая образования ветра - разница атмосферного давления. Ветер дует из области более высокого атмосферного давления, в область с более низким. Чем больше разница в атмосферном давлении, тем сильнее ветер. Распределение атмосферного давления на Земле определяет направление ветров, господствующих в тропосфере на разных широтах.

Образуются при конденсации водяного пара в поднимающемся воздухе вследствие его охлаждения.
. Вода в жидком или твердом состоянии, выпадающая на земную поверхность, называется атмосферными осадками.

По происхождению выделяют два вида осадков:

выпадающие из облаков (дождь, снег, крупа, град);
образующиеся у поверхности Земли ( , роса, изморозь).
Измеряются осадки слоем воды (в мм.), который образуется, если выпавшая вода не стекает и не испаряется. В среднем за год на Землю выпадает 1130 мм. осадков.

Распределение осадков . Атмосферные осадки распределены по земной поверхности очень неравномерно. Одни территории страдают от избытка влаги, другие от её недостатка. Особенно мало получают осадков территории, расположенные вдоль северного и южного тропиков, где воздуха высоки и потребность в осадках особенно велика.

Главная причина такой неравномерности - размещение поясов атмосферного давления. Так, в области экватора в поясе низкого давления постоянно нагретый воздух содержит много влаги, он поднимается вверх, охлаждается и становится насыщенным. Поэтому в области экватора образуется много облаков, и идут обильные дожди. Немало осадков и в других областях земной поверхности, где низкое давление.

В поясах высокого давления преобладают нисходящие воздушные потоки. Холодный воздух, опускаясь, содержит мало влаги. При опускании он сжимается и нагревается, благодаря чему удаляется от точки насыщения, становится суше. Поэтому в областях повышенного давления над тропиками и у полюсов выпадает мало осадков.

По количеству выпадающих осадков ещё нельзя судить об обеспеченности территории влагой. Необходимо учитывать возможное испарение - испаряемость. Она зависит от количества солнечного тепла: чем больше его, тем больше влаги может испариться, если она есть. Испаряемость может быть большой, а испарение маленьким. Например, в испаряемость (сколько влаги может испариться при данной температуре) 4500 мм/год, а испарение (сколько действительно испаряется) всего 100 мм/год. По соотношению испаряемости и испарения судят об увлажненности территории. Для определения увлажнения пользуются коэффициентом увлажнения. Коэффициент увлажнения – отношение годового количества осадков к испаряемости за один и тот же промежуток времени. Он выражается дробью в процентах. Если коэффициент равен 1 - увлажнение достаточное, если меньше 1, увлажнение недостаточное, а если больше 1, то увлажнение избыточное. По степени увлажнения выделяются влажные (гумидные) и сухие (аридные) области.

37.1. Домашний эксперимент.
1. Надуйте резиновый шарик.
2. Пронумеруйте фразы в таком порядке, чтобы получился связный рассказ о проделанном эксперименте.

37.2. В сосуде под поршнем заключен газ (рис. а), объем которого меняется при постоянной температуре. На рисунке б представлен график зависимости расстояния h, на котором относительно дна находится поршень, от времени t. Заполните пропуски в тексте, используя слова: увеличивается; не меняется; уменьшается.

37.3.На рисунке показана установка для изучения зависимости давления газа в закрытом сосуде от температуры. Цифрами обозначены: 1 – пробирка с воздухом; 2 – спиртовка; 3 – резиновая пробка; 4 – стеклянная трубка; 5 – цилиндр; 6 – резиновая мембрана. Поставьте знак «+» около верных утверждений и знак «» около неверных.


37.4. Рассмотрите графики зависимости давления p от времени t, соответствующие различным процессам в газах. Вставьте недостающие слова в предложение.

С течением времени давление
в процессе 1 увеличивается ;
в процессе 2 постоянное ;
в процессе 3 уменьшается .

38.1. Домашний эксперимент.
Возьмите полиэтиленовый пакет, сделайте в нем четыре дырочки одинакового размера в разных местах нижней части пакета, используя, например, толстую иглу. Над ванной налейте в пакет воды, зажмите его сверху рукой и выдавливайте воду через дырочки. Меняйте положение руки с пакетом, наблюдая, какие изменения происходят со струйками воды. Зарисуйте опыт и опишите свои наблюдения.

38.2. Отметьте галочкой утверждения, которые отражают суть закона Паскаля.
✓ Давление, производимое на газ или жидкость, передается в любую точку одинаково во всех направлениях.

38.3. Допишите текст.
Надувая резиновый шарик, мы придаем ему форму шара. При дальнейшем надувании шарик, увеличиваясь в объеме, по-прежнему сохраняет форму шара, что иллюстрирует справедливость закона Паскаля , а именно: газы передают производимое на них давление во все стороны без изменения.

38.4. На рисунке показана передача давления твердым и жидким телом, заключенным под диском в сосуде.

а) Отметьте верное утверждение.
После установки гири на диск возрастает давление … .
✓ на дно в обоих сосудах, на боковую стенку – только в сосуде 2

б) Ответьте на вопросы, записав необходимые формулы и проводя соответствующие расчеты.
С какой силой будет давить на диск площадью 100 см2 установленная на него гиря массой 200 г? F = m*g/S = 0,2*10/0,01 = 200 H
Как изменится при этом и на сколько давление:
на дно сосуда 1 200 Н ;
на дно сосуда 2 200 Н ;
на боковую стенку сосуда 1 0 Н ;
на боковую стенку сосуда 2 200 Н ?

39.1. Отметьте верное окончание фразы.

Нижнее и боковое отверстия трубки затянуты одинаковыми резиновыми мембранами. В трубку наливают воду и медленно опускают ее в широкий сосуд с водой до тех пор, пока уровень воды в трубке не совпадет с уровнем воды в сосуде. В этом положении мембраны … .
✓ обе плоские

39.2. На рисунке показан опыт с сосудом, дно которого может отпадать.

В ходе опыта были сделаны три наблюдения.
1. Дно пустой бутылки прижато, если трубка погружена в воду на некоторую глубину Н.
2. Дно по-прежнему прижато к трубке, когда в нее начинают наливать воду.
3. Дно начинает отходить от трубки в тот момент, когда уровень воды в трубке совпадет с уровнем воды в сосуде.
а) В левом столбце таблицы запишите номера наблюдений, которые позволяют прийти к выводам, обозначенным в правом столбце.

б) Запишите свои гипотезы о том, что может измениться в описанном выше опыте, если:
в сосуде будет находиться вода, а в трубку будут наливать подсолнечное масло дно трубки начнет отходить когда уровень масла будет выше уровня воды в сосуде;
в сосуде будет находиться подсолнечное масло, а в трубку будут наливать воду дно трубки начнет отходить раньше, чем совпадут уровни воды и масла.

39.3. В закрытом баллоне с площадью основания 0,03 м2 и высотой 1,2 м находится воздух плотностью 1,3 кг/м3. Определите «весовое» давление воздуха на дно баллона.

40.1. Запишите, какие из опытов, изображенных на рисунке, подтверждают, что давление в жидкости с глубиной увеличивается.

Поясните, что демонстрирует каждый из опытов.

40.2. Кубик помещен в жидкость плотностью p, налитую в открытый сосуд. Поставьте в соответствие указанным уровням жидкости формулы для вычисления давления, созданного столбом жидкости на этих уровни.

40.3. Отметьте знаком «+» верные утверждения.

Сосуды различной формы заполнили водой. При этом … .
+ давление воды на дно всех сосудов одинаково, поскольку давление жидкости на дно определяется только высотой столба жидкости.

40.4. Выберите пару слов, пропущенных в тексте. «Дном сосудов 1, 2 и 3 служит резиновая пленка, укрепленная в стойке прибора».

40.5. Чему равно давление воды на дно прямоугольного аквариума длиной 2 м, шириной 1 м и глубиной 50 см, доверху заполненного водой.

40.6. Используя рисунок, определите:

а) давление, созданное столбом керосина на поверхность воды:
pк = p*g*h = 800*10*0,5 = 4000 Па;
б) давление на дно сосуда, созданное только столбом воды:
pв = 1000*10*0,3 = 3000 Па;
в) давление на дно сосуда, созданное двумя жидкостями:
p = 4000 + 3000 = 7000 Па.

41.1. В одну из трубок сообщающихся сосудов налита вода. Что произойдет, если зажим с пластиковой трубки убрать?

Уровень воды в трубках станет одинаковым.
41.2. В одну из трубок сообщающихся сосудов налита вода, а в другую – бензин. Если зажим с пластиковой трубки убрать, то:

41.3. Впишите в текст подходящие по смыслу формулы и сделайте вывод.
Сообщающиеся сосуды заполнены одной и той же жидкостью. Давление столба жидкости

41.4. Какова высота столба воды в U-образном сосуде относительно уровня АВ, если высота столба керосина 50 см?

41.5. В сообщающиеся сосуды налиты машинное масло и вода. Рассчитайте, на сколько сантиметров уровень воды находится ниже уровня масла, если высота столба масла относительно границы раздела жидкостей Нм = 40 см.

42.1. На весах уравновесили стеклянный шар объемом 1 л. Шар закрыт пробкой, в которую вставлена резиновая трубка. Когда из шара при помощи насоса откачали воздух и зажали трубку зажимом, равновесие весов нарушилось.
а) Груз какой массы придется положить на левую чашу весов, чтобы их уравновесить? Плотность воздуха 1,3 кг/м3.

б) Каков вес воздуха, находившегося в колбе до откачивания?
Pвозд = m*g = 0,0013*10 = 0,013 H

42.2. Опишите, что произойдет, если конец резиновой трубки шара, из которого откачали воздух (см. задание 42.1), опустить в стакан с водой, а затем снять зажим. Объясните явление.
Шар заполнится водой, потому что давление внутри шара меньше атмосферного.

42.3. На асфальте начерчен квадрат со стороной 0,5 м. Рассчитайте массу и вес столба воздуха высотой 100 м, расположенного над квадратом, считая, что плотность воздуха не меняется с высотой и равна 1,3 кг/м3.

42.4. При движении поршня вверх внутри стеклянной трубки вода поднимается за ним. Отметьте правильное объяснение этого явления.

Вода поднимается за поршнем … .
✓ под давлением наружного воздуха, заполняя безвоздушное пространство, образовавшееся между поршнем и водой.

43.1. В кружках А, В, С схематично изображен воздух разной плотности. Отметьте на рисунке места, где следует расположить каждый кружок, чтобы в целом получилась картина, иллюстрирующая зависимость плотности воздуха от высоты над уровнем моря.

43.2. Выберите правильный ответ.
Для того чтобы покинуть Землю, любая молекула воздушной оболочки Земли должна обладать скоростью, большей чем … .
✓ 11,2 км/с

43.3. На Луне, масса которой примерно в 80 раз меньше массы Земли, отсутствует воздушная оболочка (атмосфера). Чем это можно объяснить? Запишите вашу гипотезу.
Молекулы воздуха слабо удерживаются Луной, в отличие от Земли. Поэтому Луна не имеет атмосферы.

44.1. Выберите правильное утверждение.
В опыте Торричелли в стеклянной трубке над поверхностью ртути … .

✓ создается безвоздушное пространство

44.2. В трех отрытых сосудах находится ртуть: в сосуде А высота столба ртути 1 м, в сосуде В – 1 дм, в сосуде С – 1 мм. Вычислите, какое давление на дно сосуда оказывает столб ртути в каждом случае.

44.3. Запишите значения давления в указанных единицах по приведенному образцу, округлив результат до целых.

44.4. Найдите давление на дно цилиндра, заполненного подсолнечным маслом, если атмосферное давление равно 750 мм рт. ст.

44.5. Какое давление испытывает аквалангист на глубине 12 м под водой, если атмосферное давление 100 кПа? Во сколько раз это давление больше атмосферного?

45.1. На рисунке показана схема устройства барометра-анероида. Отдельные детали конструкции прибора обозначены цифрами. Заполните таблицу.

45.2. Заполните пропуски в тексте.


На рисунках изображен прибор, который называется __барометр-анероид_.
Этим прибором измеряют ___атмосферное давление __.
Запишите показание каждого прибора с учетом погрешности измерения.

45.3. Заполните пропуски в тексте. «Разница атмосферного давления в разных слоях атмосферы Земли вызывает движение воздушных масс».

45.4. Запишите значения давления в указанных единицах, округляя результат до целых.

46.1. На рисунке а изображена трубка Торричелли, расположенная на уровне моря. На рисунках б и в отметьте уровень ртути в трубке, помещенной соответственно на горе и в шахте.

46.2. Заполните пропуски в тексте, используя слова, приведенные в скобках.
Измерения показывают, что давление воздуха быстро уменьшается (уменьшается, увеличивается) с увеличением высоты. Причиной тому служит не только уменьшение (уменьшение, увеличение) плотности воздуха, но и понижение (понижение, повышение) его температуры при удалении от поверхности Земли на расстояние до 10 км.

46.3. Высота Останкинской телебашни достигает 562 м. Чему равно атмосферное давление около вершины телебашни, если у ее основания атмосферное давление равно 750 мм рт. ст.? Давление выразите в мм рт. ст. и в единицах СИ, округлив оба значения до целых.

46.4. Выберите на рисунке и обведите график, который наиболее правильно отражает зависимость атмосферного давления p от высоты h над уровнем моря.

46.5. У кинескопа телевизора размеры экрана составляют l = 40 см и h = 30 см. С какой силой давит атмосфера на экран с наружной стороны (или какова сила давления), если атмосферное давление pатм = 100 кПа?

47.1. Постройте график зависимости давления p, измеряемого под водой, от глубины погружения h, заполнив предварительно таблицу. Считайте g = 10 Н/кг, pатм = 100 кПа.


47.2. На рисунке изображен открытый жидкостный манометр. Цена деления и шкалы прибора 1 см.
а) Определите, на сколько давление воздуха в левом колене манометра отличается от атмосферного. 10 мм

б) Определите давление воздуха в левом колене манометра с учетом того, что атмосферное давление 100 кПа.
р (лев) + p*g*h = p(атм) + p*g*h

47.3. На рисунке показана U-образная трубка, заполненная ртутью, правый конец которой закрыт. Чему равно атмосферное давление, если разность уровней жидкости в коленах U-образной трубки равна 765 мм, а мембрана погружена в воду на глубину 20 см?

47.4. а) Определите цену деления и показание металлического манометра (рис. а).

б) Опишите принцип действия прибора, используя цифровые обозначения деталей (рис. б).
Основная часть – согнутая в дугу металл. трубка 1, с помощью крана 4 сообщается с сосудом, в котором измеряется давление. Движение закрытого конца трубки при помощи рычага 5 и зубчатки 3 передается стрелке 2.

48.1. а) Зачеркните ненужные из выделенных слов, чтобы получилось описание работы поршневого насоса, изображенного на рисунке.

При движении рукоятки насоса вниз поршень в сосуде А движется вверх, вниз, верхний клапан открыт, закрыт, нижний клапан открыт, закрыт, вода из сосуда В не перемещается в пространство под поршнем, вода из отводящей трубы не выливается.

б) Опишите, что происходит при движении рукоятки насоса вверх.
Поршень движется вверх, вместе с ним поднимается вода из сосуда В, открывается нижний клапан и вода движется за поршнем. Вода из отводящей трубы выливается.

48.2. Поршневым насосом, схема которого приведена в задании 48.1, при нормальном атмосферном давлении можно поднять воду на высоту не более 10 м. Объясните почему.

48.3. Вставьте в текст пропущенные слова, чтобы получилось описание работы поршневого насоса с воздушной камерой.

49.1. Допишите формулы, показывающие правильные соотношения между площадями покоящихся поршней гидравлической машины и массами грузов.

49.2. Площадь малого поршня гидравлической машины равна 0,04 м2, площадь большого – 0,2 м2. С какой силой следует действовать на малый поршень, чтобы равномерно поднять груз массой 100 кг, находящийся на большом поршне?

49.3. Заполните пропуски в тексте, описывающем принцип действия гидравлического пресса, схема устройства которого показана на рисунке.

49.4. Опишите принцип действия отбойного молотка, схема устройства которого показана на рисунке.

По шлангу 3 подается сжатый воздух. Устройство 2, называемое золотником, направляет его поочередно то в верхнюю, то в нижнюю часть цилиндра. Под действием этого воздуха боек 4 начинает быстро перемещаться то в одну, то в другую сторону, периодически (с частотой 1000 – 1500 ударов в минуту), воздействуя на пику 1.

49.5. На рисунке показана схема устройства пневматического тормоза железнодорожного вагона.


а) Вставьте в текст пропущенные цифры, обозначающие соответствующие им детали на рисунке. «Когда магистраль ____ и резервуар 3 заполнены сжатым воздухом, его давление на поршень ___ тормозного цилиндра с обеих сторон одинаково, тормозные колодки при этом не касаются колес».

б) Выберите правильный порядок пропущенных цифр, обозначающих детали в тексте.
1 – 4 – 7 – 4 – 5 – 6

1. Атмосферное давление. Как видно из предыдущего изложения материала, слой воздуха над земной поверхностью распространяется до высоты около 1000 км. Этот воздух удерживается у поверхности земли силой земного притяжения, т.е. имеет определенный вес. На поверхность земли и на все предметы, находящиеся у ее поверхности, этот воздух создает давление, равное 1033 г/см. Следовательно, на всю поверхность тела человека, имеющего площадь 1,6-1,8 м этот воздух, соответственно, оказывает давление порядка 16-18 тонн. Обычно мы этого не ощущаем, поскольку под таким же давлением газы растворены в жидкостях и тканях организма и изнутри уравновешивают внешнее давление на поверхность тела. Однако при изменении внешнего атмосферного давления в силу погодных условий для уравновешивания его изнутри требуется некоторое время, необходимое для увеличения или снижения количества газов, растворенных в организме. В течение этого времени человек может ощущать некоторое чувство дискомфорта, поскольку при изменении атмосферного давления всего на несколько мм. рт. столба общее давление на поверхность тела изменяется на десятки килограммов. Особенно отчетливо ощущают эти изменения люди, страдающие хроническими заболеваниями костно-мышечного аппарата, сердечно-сосудистой системы и др.

Кроме того, с изменением барометрического давления человек может встретиться в процессе своей деятельности: при подъеме на высоту, при водолазных, кессонных работах и т.д. Поэтому врачам необходимо знать какое влияние оказывает на организм как понижение, так и повышение атмосферного давления.

Влияние пониженного давления

С пониженным давлением человек встречается главным образом при подъеме на высоту (при экскурсиях в горы либо при использовании летательных аппаратов). При этом основным фактором, который оказывает влияние на человека, является кислородная недостаточность.

С увеличением высоты атмосферное давление постепенно снижается (примерно на 1 мм. рт. ст. на каждые 10 м высоты). На высоте 6 км атмосферное давление уже вдвое ниже, чем на уровне моря, а на высоте 16 км - в 10 раз.

Хотя процентное содержание кислорода в атмосферном воздухе, как мы отметили ранее, с поднятием на высоту почти не меняется, однако в связи со снижением общего давления снижается и парциальное давление кислорода в нем, т.е. доля давления, которая обеспечивается за счет кислорода в общем давлении.

Оказывается, что именно парциальное давление кислорода обеспечивает переход (диффузию) кислорода из альвеолярного воздуха в венозную кровь. Вернее этот переход происходит за счет разницы парциального давления кислорода в венозной крови и в альвеолярном воздухе. Эта разница и называется диффузным давлением. При малом диффузном давлении артериализация крови в легких затрудняется, наступает гипоксемия, которая является основным фактором развития высотной и горной болезней. Симптоматика этих болезней весьма сходна с симптоматикой общей кислородной недостаточности, описанной нами ранее: одышка, сердцебиение, побледнение кожных покровов и акроцианоз, головокружение, слабость, быстрая утомляемость, сонливость, тошнота, рвота, потеря сознания. Начальные признаки высотной или горной болезней начинают проявляться уже с высоты 3-4 км.

В зависимости от парциального давления кислорода в воздухе на разных высотах различают следующие зоны (по степени влияния на организм человека):

1. Индифферентная зона до 2 км

2. Зона полной компенсации 2-4 км

3. Зона неполной компенсации 4-6 км

4. Критическая зона 6-8 км

5. Смертельная зона выше 8 км

Естественно, что деление на такие зоны является условным, так как разные люди по-разному переносят кислородную недостаточность. Большую роль при этом играет степень тренированности организма. У тренированных людей улучшена деятельность компенсаторных механизмов, увеличено количество циркулирующей крови, гемоглобина и эритроцитов, улучшена тканевая адаптация.

Кроме кислородной недостаточности, снижение барометрического давления при подъеме на высоту приводит и к другим нарушениям состояния организма. Прежде всего это декомпрессионные расстройства, выражающиеся в расширении газов, находящихся в естественных полостях организма (придаточные пазухи носа, среднее ухо, плохо запломбированные зубы, газы в кишечнике и т.д.). При этом могут возникнуть боли, иногда достигающие значительной силы. Особенно опасны эти явления при резком снижении давления (к примеру, разгерметизация кабин самолетов). В таких случаях могут произойти повреждения легких, кишечника, носовые кровотечения и т.д. Снижение давления до 47 мм рт. ст. и ниже (на высоте 19 км) приводит к тому, что жидкости в организме закипают при температуре тела, так как давление становится ниже давления водяных паров при этой температуре. Это выражается в возникновении так называемой подкожной эмфиземы.

Влияние повышенного давления

Водолазные и кессонные работы человек вынужден выполнять при повышенном давлении. Переход к повышенному давлению здоровые люди переносят довольно безболезненно. Лишь иногда отмечаются кратковременные неприятные ощущения. При этом происходит уравновешивание давления во всех внутренних полостях организма с наружным давлением, а также растворение азота в жидкостях и тканях организма в соответствии с парциальным давлением его во вдыхаемом воздухе. На каждую добавочную атмосферу давления в организме растворяется дополнительно примерно по 1 литру азота.

Значительно серьезнее обстоит дело при переходе из атмосферы с повышенным давлением к нормальному (при декомпрессии). При этом азот, растворившийся в крови и тканевых жидкостях организма, стремится выделиться во внешнюю атмосферу. Если декомпрессия происходит медленно, то азот постепенно диффундирует через легкие и десатурация происходит нормально. Однако в случае ускорения декомпрессии азот не успевает диффундировать через легочные альвеолы и выделяется в тканевых жидкостях и в крови в газообразном виде (в виде пузырьков), При этом возникают болезненные явления, носящие название кессонной болезни. Выделение азота происходит сначала из тканевых жидкостей, поскольку они имеют наименьший коэффициент перенасыщения азота, а затем может произойти и в кровяном русле (из крови). Кессонная болезнь выражается прежде всего в возникновении резких ломящих болей в мышцах, костях и суставах. В народе это заболевание весьма метко назвали "заломай". В дальнейшем симптоматика развивается в зависимости от локализации сосудистых эмболов (мраморность кожи, парестезии, парезы, параличи, и т.д.).

Декомпрессия является ответственным моментом при таких работах и на нее уходит значительное количество времени. График работы в кессоне при давлении, равном трем добавочным атмосферам (3 АТМ), следующий:

Длительность всей полусмены - 5 ч 20 мин.

Период компрессии - 20 мин.

Работа в кессоне - 2 ч 48 мин.

Период декомпрессии - 2 ч 12 мин.

Естественно, что при работе в кессонах с более высоким давлением значительно удлиняется период декомпрессии и, соответственно, сокращается

Период работы в рабочей камере.

2. Движение воздуха. В результате неравномерного нагревания земной поверхности создаются места с повышенным и пониженным атмосферным давлением, что, в свою очередь, приводит к перемещению воздушных масс.

Движение воздуха способствует сохранению постоянства и относительной равномерности воздушной среды (уравновешивание температур, перемешивание газов, разбавление загрязнений), а также способствует отдаче тепла организмом. Особое значение при планировке населенных мест имеет так называемая "роза ветров", представляющая собой графическое изображение повторяемости направления ветров в данной местности за определенный промежуток времени. При планировании территории населенных мест промышленную зону следует располагать с подветренной стороны по отношению к жилой зоне. Скорость движения воздуха в атмосфере может колебаться от полного штиля до ураганов (свыше 29 м/с). В жилых и общественных помещениях скорость движения воздуха нормируется в пределах 0,2-0,4 м/с. Слишком маленькая скорость движения воздуха свидетельствует о плохой вентилируемости помещения, большая (более 0,5 м/с) - создает неприятное ощущение сквозняка.

3. Влажность воздуха. Воздух тропосферы содержит значительное количество водяных паров, которые образуются в результате испарения с поверхности воды, почвы, растительности и т.д. Эти пары переходят из одного агрегатного состояния в другое, влияя на общую влажностную динамику атмосферы. Количество влаги в воздухе с подъемом на высоту быстро уменьшается. Так, на высоте 8 км влажность воздуха составляет всего около 1% от того количества влаги, которое определяется на уровне земли.

Для человека наиболее важное значение имеет относительная влажность воздуха, которая показывает степень насыщения воздуха водяными парами. Она играет большую роль при осуществлении терморегуляции организма. Оптимальной величиной относительной влажности воздуха считается 40-60 %, допустимой - 30-70 %. При низкой влажности воздуха (15-10 %) происходит более интенсивное обезвоживание организма. При этом субъективно ощущается повышенная жажда, сухость слизистых оболочек дыхательных путей, появление трещин на них с последующими воспалительными явлениями и т.д. Особенно тягостны эти ощущения у температурящих больных. Поэтому на микроклиматические условия в палатах у таких больных следует обращать особое внимание. Высокая влажность воздуха неблагоприятно сказывается на терморегуляции организма, затрудняя или усиливая теплоотдачу в зависимости от температуры воздуха (см. далее вопросы терморегуляции).

4. Температура воздуха. Человек приспособился к существованию в пределах определенных значений температуры. У поверхности земли температура воздуха в зависимости от широты местности и сезона года колеблется в пределах около 100°С, С подъемом на высоту температура воздуха постепенно снижается (примерно на 0,56°С на каждый 100 м подъема). Эта величина называется нормальным температурным градиентом. Однако в силу особых сложившихся метеорологических условий (низкая облачность, туман) этот температурный градиент иногда нарушается и наступает так называемая температурная инверсия, когда верхние слои воздуха становятся более теплыми, чем нижние. Это имеет особое значение в решении проблем, связанных с загрязнением атмосферного воздуха.

Возникновение температурной инверсии снижает возможности для разбавления загрязнений, выбрасываемых в воздух, и способствует созданию высоких их концентраций.

Для рассмотрения вопросов влияния температуры воздуха на организм человека необходимо вспомнить основные механизмы терморегуляции.

Терморегуляция. Одним из важнейших условий для нормальной жизнедеятельности человеческого организма является сохранение постоянства температуры тела. При обычных условиях человек в среднем теряет в сутки около 2400-2700 ккал. Около 90% этого тепла отдается во внешнюю среду через кожные покровы, остальные 10-15 % расходуются на нагревание пищи, питья и вдыхаемого воздуха, а также на испарение с поверхности слизистых оболочек дыхательных путей и т.д. Следовательно, наиболее важным путем теплоотдачи является поверхность тела. С поверхности тела тепло отдается в виде излучения (инфракрасная радиация), проведения (путем непосредственного контакта с окружающими предметами и прилегающим к поверхности тела слоем воздуха) и испарения (в виде пота или других жидкостей).

В обычных комфортных условиях (при комнатной температуре в легкой одежде) соотношение степени теплоотдачи этими способами следующее:

1. Излучение - 45 %

2. Проведение - 30 %

3. Испарение - 25 %

Используя эти механизмы теплоотдачи, организм может в значительной степени охранить себя от воздействия высоких температур и предотвратить перегревание. Эти механизмы терморегуляции называются физическими. Кроме них, существуют еще химические механизмы, которые заключаются в том, что при воздействии низких или высоких температур изменяются процессы обмена веществ в организме, в результате чего происходит увеличение или снижение выработки тепла.

Комплексное воздействие метеорологических факторов на организм. Перегревание происходит обычно при высокой температуре окружающей среды в сочетании с высокой влажностью. При сухом воздухе высокая температура переносится значительно легче, потому что при этом значительная часть тепла отдается способом испарения. При испарении 1 г пота расходуется около 0,6 ккал. Особенно хорошо теплоотдача происходит, если сопровождается движением воздуха. Тогда испарение происходит наиболее интенсивно. Однако если высокая температура воздуха сопровождается высокой влажностью, то испарение с поверхности тела будет происходить недостаточно интенсивно или вовсе прекратится (воздух насыщен влагой). В этом случае теплоотдача происходить не будет, и тепло начнет накапливаться в организме - произойдет перегревание. Различают два проявления перегревания: гипертермия и судорожная болезнь. При гипертермии различают три степени: а) легкая, б) умеренная, в) тяжелая (тепловой удар). Судорожная болезнь возникает из-за резкого снижения в крови и тканях организма хлоридов, которые теряются при интенсивном потении.

Переохлаждение. Низкая температура в сочетании с низкой относительной влажностью и малой скоростью движения воздуха переносится человеком довольно хорошо. Однако низкая температура в сочетании с высокой влажностью и скоростью движения воздуха создают возможности для возникновения переохлаждения. В силу большой теплопроводности воды (в 28 раз больше воздуха) и большой ее теплоемкости в условиях сырого воздуха резко повышается отдача тепла способом теплопроведения. Этому способствует повышенная скорость движения воздуха. Переохлаждение может быть общим и местным. Общее переохлаждение способствует возникновению простудных и инфекционных заболеваний вследствие снижения общей резистентности организма. Местное переохлаждение может привести к ознобу и отморожению, причем главным образом при этом страдают конечности ("траншейная стопа"). При местном охлаждении могут иметь место и рефлекторно возникающие реакции в других органах и системах.

Таким образом, становится понятным, что высокая влажность воздуха играет отрицательную роль в вопросах терморегуляции как при высоких, так и при низких температурах, а увеличение скорости движения воздуха, как правило, способствует теплоотдаче. Исключение составляют случаи, когда температура воздуха выше температуры тела, а относительная влажность достигает 100 %.

В этом случае повышение скорости движения воздуха не приведет к увеличению теплоотдачи ни способом испарения (воздух насыщен влагой), ни способом проведения (температура воздуха выше температуры поверхности тела).

Метеотропные реакции. Погодные условия оказывают существенное влияние на течение многих заболеваний. В условиях Подмосковья, например, почти у 70% сердечно-сосудистых больных ухудшение состояния по времени совпадает с периодами значительного изменения метеорологических условий. Подобная связь отмечена и многими исследованиями, проведенными практически во всех климато-географических регионах как в нашей стране, так и за рубежом. Повышенной чувствительностью к неблагоприятной погоде отличаются также люди, страдающие хроническими неспецифическими заболеваниями легких. Такие больные плохо переносят погоду с высокой влажностью, резкими перепадами температуры, сильным ветром. Весьма выражена связь с погодой течения заболевания бронхиальной астмой. Это находит отражение даже в неравномерности географического распространения данного заболевания, которое чаще встречается в районах с влажным климатом и контрастной сменой погоды. Так, например, в Северных районах, в горной местности и на юге Средней Азии заболеваемость бронхиальной астмой в 2-3 раза ниже, чем в Прибалтийских странах. Хорошо известна также повышенная чувствительность к погодным условиям и их изменению у больных с ревматическими заболеваниями. Возникновение ревматических болей в суставах, предшествующее или сопутствующее изменению погоды, стало одним из классических примеров метеопатической реакции. Не случайно многих больных ревматизмом образно именуют "живыми барометрами". На изменение погодных условий часто реагируют больные диабетом, нервно- психическими и другими заболеваниями. Имеются данные о влиянии погодных условий на хирургическую практику. Отмечено, в частности, что при неблагоприятной погоде ухудшается течение и исход послеоперационного периода у сердечно-сосудистых и других больных.

Исходным в обосновании и проведении профилактических мероприятий при метеотропных реакциях является медицинская оценка погоды. Существует несколько видов классификации типов погоды, наиболее простой из которых является классификация по Г.П. Федорову. Согласно этой классификации различают три типа погоды:

1) Оптимальная- межсуточные колебания температуры до 2°С, скорость

Движения воздуха до 3 м/сек, изменение атмосферного давления до 4 мбар.

2) Раздражающая- колебания температуры до 4°С, скорость движения воздуха до 9 м/сек, изменение атмосферного давления до 8 мбар.

3) Острая - колебания температуры более 4°С, скорость движения воздуха более 9 м/сек, изменение атмосферного давления более 8 мбар.

В медицинской практике желательно производить медицинский прогноз погоды на основании этой классификации и предпринимать соответствующие профилактические меры.