Теория вероятностей – математическая наука, изучающая закономерности случайных явлений. Под случайными явлениями пони-маются явления с неопределенным исходом, происходящие при неоднократном воспроизведении определенного комплекса условий.

Например, при бросании монеты нельзя предсказать, какой стороной она упадет. Результат бросания монеты случаен. Но при дос-таточно большом числе бросаний монеты существует определенная закономерность (герб и решетка выпадут примерно одинаковое число раз).

Основные понятия теории вероятностей

Испытание (опыт, эксперимент) - осуществление некоторого определенного комплекса условий, в которых наблюдается то или иное явление, фиксируется тот или иной результат.

Например: подбрасывание игральной кости с выпадением числа очков; перепад температуры воздуха; метод лечения заболевания; некоторый период жизни человека.

Случайное событие (или просто событие) – исход испытания.

Примеры случайных событий:

    выпадение одного очка при подбрасывании игральной кости;

    обострение ишемической болезни сердца при резком повышении температуры воздуха летом;

    развитие осложнений заболевания при неправильном выборе метода лечения;

    поступление в вуз при успешной учебе в школе.

События обозначают прописными буквами латинского алфа-вита: A , B , C ,

Событие называется достоверным , если в результате испытания оно обязательно должно произойти.

Событие называется невозможным , если в результате испы-тания оно вообще не может произойти.

Например,если в партии все изделия стандартные, то извлечение из неё стандартного изделия - событие достоверное, а извлечение при тех же условиях бракованного изделия – событие невозможное.

КЛАССИЧЕСКОЕ ОПРЕДЕЛЕНИЕ ВЕРОЯТНОСТИ

Вероятность является одним из основных понятий теории вероятностей.

Классической вероятностью события называется отношение числа случаев, благоприятствующих событию , к общему числу случаев, т.е.

, (5.1)

где
- вероятность события ,

- число случаев, благоприятствующих событию ,

- общее число случаев.

Свойства вероятности события

    Вероятность любого события заключена между нулем и единицей, т.е.

    Вероятность достоверного события равна единице, т.е.

.

    Вероятность невозможного события равна нулю, т.е.

.

(Предложить решить несколько простых задач устно).

СТАТИСТИЧЕСКОЕ ОПРЕДЕЛЕНИЕ ВЕРОЯТНОСТИ

На практике часто при оценке вероятностей событий основываются на том, насколько часто будет появляться данное событие в произведенных испытаниях. В этом случае используется статистическое определение вероятности.

Статистической вероятностью события называется предел относительной частоты (отношение числа случаев m , благоприятствующих появлению события , к общему числу произведенных испытаний), когда число испытаний стремится к бесконечности, т.е.

где
- статистическая вероятность события ,
- число испытаний, в которых появилось событие , - общее число испытаний.

В отличие от классической вероятности, статистическая вероятность является характеристикой опытной. Классическая вероятность служит для теоретического вычисления вероятности события по заданным условиям и не требует, чтобы испытания проводились в действительности. Формула статистической вероятности служит для экспериментального определения вероятности события, т.е. предполагается, что испытания были проведены фактически.

Статистическая вероятность приблизительно равна относительной частоте случайного события, поэтому на практике за статистическую вероятность берут относительную частоту, т.к. статистическую вероятность практически найти нельзя.

Статистическое определение вероятности применимо к случайным событиям, которые обладают следующими свойствами:

Теоремы сложения и умножения вероятностей

Основные понятия

а) Единственно возможные события

События
называют единственно возможными, если в результате каждого испытания хотя бы одно из них наверняка наступит.

Эти события образуют полную группу событий.

Например, при подбрасывании игрального кубика, единственно возможными являются события выпадения граней с одним, двумя, тремя, четырьмя, пятью и шестью очками. Они образуют полную группу событий.

б) События называют несовместными , если появление одного из них исключает появление других событий в одном и том же испытании. В противном случае их называют совместными.

в) Противоположными называют два единственно возможных события, образующих полную группу. Обозначают и .

г ) События называют независимыми , если вероятность наступления одного из них не зависит от совершения или несовершения других.

Действия над событиями

Суммой нескольких событий называется событие, состоящее в наступлении хотя бы одного из данных событий.

Если и – совместные события, то их сумма
или
обозначает наступление или события A, или события B, или обоих событий вместе.

Если и – несовместные события, то их сумма
означает наступление или события , или события .

Сумму событий обозначают:

Произведением (пересечением) нескольких событий называется событие, состоящее в совместном наступлении всех этих событий.

Произведение двух событий обозначают
или
.

Произведение событий обозначают

Теорема сложения вероятностей несовместных событий

Вероятность суммы двух или нескольких несовместных событий равна сумме вероятностей этих событий:

Для двух событий;

- для событий.

Следствия:

а) Сумма вероятностей противоположных событий и равна единице:

Вероятность противоположного события обозначают :
.

б) Сумма вероятностей событий, образующих полную группу событий, равна единице: или
.

Теорема сложения вероятностей совместных событий

Вероятность суммы двух совместных событий равна сумме вероятностей этих событий без вероятностей их пересечения, т.е.

Теорема умножения вероятностей

а) Для двух независимых событий:

б) Для двух зависимых событий

где
– условная вероятность события , т.е. вероятность события , вычисленная при условии, что событие произошло.

в) Для независимых событий:

.

г) Вероятность наступления хотя бы одного из событий ,образующих полную группу независимых событий:

Условная вероятность

Вероятность события , вычисленная при условии, что произошло событие , называется условной вероятностью события и обозначается
или
.

При вычислении условной вероятности по формуле клас-сической вероятности число исходов и
подсчитывается с учетом того, что до совершения события произошло событие .

Многие, столкнувшись с понятием «теория вероятности», пугаются, думая, что это нечто непосильное, очень сложное. Но все на самом деле не так трагично. Сегодня мы рассмотрим основное понятие научимся решать задачи на конкретных примерах.

Наука

Что же изучает такой раздел математики, как «теория вероятности»? Она отмечает закономерности и величин. Впервые данным вопросом заинтересовались ученые еще в восемнадцатом веке, когда изучали азартные игры. Основное понятие теории вероятности - событие. Это любой факт, который констатируется опытом или наблюдением. Но что же такое опыт? Еще одно основное понятие теории вероятности. Оно означает, что этот состав обстоятельств создан не случайно, а с определенной целью. Что касается наблюдения, то здесь исследователь сам не участвует в опыте, а просто является свидетелем данных событий, он никак не влияет на происходящее.

События

Мы узнали, что основное понятие теории вероятности - это событие, но не рассмотрели классификацию. Все они делятся на следующие категории:

  • Достоверные.
  • Невозможные.
  • Случайные.

Независимо от того, какие это события, за которыми наблюдают или создают в ходе опыта, все они подвержены данной классификации. Предлагаем с каждым из видов познакомиться отдельно.

Достоверное событие

Это такое обстоятельство, перед которым сделан необходимый комплекс мероприятий. Для того чтобы лучше вникнуть в суть, лучше привести несколько примеров. Этому закону подчинены и физика, и химия, и экономика, и высшая математика. Теория вероятности включает такое важное понятие, как достоверное событие. Приведем примеры:

  • Мы работаем и получаем вознаграждение в виде заработной платы.
  • Сдали хорошо экзамены, прошли конкурс, за это получаем вознаграждение в виде поступления в учебное заведение.
  • Мы вложили деньги в банк, при необходимости получим их назад.

Такие события являются достоверными. Если мы выполнили все необходимые условия, то обязательно получим ожидаемый результат.

Невозможные события

Сейчас мы рассматриваем элементы теории вероятности. Предлагаем перейти к пояснению следующего вида события, а именно - невозможного. Для начала оговорим самое важное правило - вероятность невозможного события равна нулю.

От данной формулировки нельзя отступать при решении задач. Для пояснения приведем примеры таких событий:

  • Вода замерзла при температуре плюс десять (это невозможно).
  • Отсутствие электроэнергии никак не влияет на производство (так же невозможно, как и в предыдущем примере).

Более примеров приводить не стоит, так как описанные выше очень ярко отражают суть данной категории. Невозможное событие никогда не произойдет во время опыта ни при каких обстоятельствах.

Случайные события

Изучая элементы теории вероятности, особое внимание стоит уделить именно данному виду события. Именно их и изучает данная наука. В результате опыта может что-то произойти или нет. Кроме этого, испытание может проводиться неограниченное количество раз. Яркими примерами могут служить:

  • Бросок монеты - это опыт, или испытание, выпадение орла - это событие.
  • Вытягивание мячика из мешка вслепую - испытание, попался красный шар - это событие и так далее.

Таких примеров может быть неограниченное количество, но, в общем, суть должна быть понятна. Для обобщения и систематизирования полученных знаний о событиях приведена таблица. Теория вероятности изучает только последний вид из всех представленных.

название

определение

Достоверные

События, происходящие со стопроцентной гарантией при соблюдении некоторых условий.

Поступление в учебное заведение при хорошей сдаче вступительного экзамена.

Невозможные

События, которые никогда не произойдут ни при каких условиях.

Идет снег при температуре воздуха плюс тридцать градусов по Цельсию.

Случайные

Событие, которое может произойти или нет в ходе проведения опыта/испытания.

Попадание или промах при бросании баскетбольного мяча в кольцо.

Законы

Теория вероятности - это наука, изучающая возможность выпадения какого-либо события. Как и другие, она имеет некоторые правила. Существуют следующие законы теории вероятности:

  • Сходимость последовательностей случайных величин.
  • Закон больших чисел.

При расчете возможности сложного можно использовать комплекс простых событий для достижения результата более легким и быстрым путем. Отметим, что законы теории вероятности легко доказываются с помощью некоторых теорем. Предлагаем для начала познакомиться с первым законом.

Сходимость последовательностей случайных величин

Отметим, что видов сходимости несколько:

  • Последовательность случайных величин сходима по вероятности.
  • Почти невозможное.
  • Среднеквадратическая сходимость.
  • Сходимость по распределению.

Так, с лету, очень тяжело вникнуть в суть. Приведем определения, которые помогут разобраться в данной теме. Для начала первый вид. Последовательность называют сходимой по вероятности , если соблюдено следующее условие: n стремится к бесконечности, число, к которому стремится последовательность, больше нуля и приближена к единице.

Переходим к следующему виду, почти наверное . Говорят, что последовательность сходится почти наверное к случайной величине при n, стремящейся к бесконечности, и Р, стремящейся к величине, приближенной к единице.

Следующий тип - это сходимость среднеквадратическая . При использовании СК-сходимости изучение векторных случайных процессов сводится к изучению их координатных случайных процессов.

Остался последний тип, давайте разберем кратко и его, чтобы переходить непосредственно к решению задач. Сходимость по распределению имеет и еще одно название - «слабое», далее поясним, почему. Слабая сходимость — это сходимость функций распределения во всех точках непрерывности предельной функции распределения.

Обязательно выполним обещание: слабая сходимость отличается от всех вышеперечисленных тем, что случайная величина не определена на вероятностном пространстве. Это возможно потому, что условие формируется исключительно с использованием функций распределения.

Закон больших чисел

Отличными помощниками при доказательстве данного закона станут теоремы теории вероятности, такие как:

  • Неравенство Чебышева.
  • Теорема Чебышева.
  • Обобщенная теорема Чебышева.
  • Теорема Маркова.

Если будем рассматривать все эти теоремы, то данный вопрос может затянуться на несколько десятков листов. У нас же основная задача - это применение теории вероятности на практике. Предлагаем вам прямо сейчас этим и заняться. Но перед этим рассмотрим аксиомы теории вероятностей, они будут основными помощниками при решении задач.

Аксиомы

С первой мы уже познакомились, когда говорили о невозможном событии. Давайте вспоминать: вероятность невозможного события равна нулю. Пример мы приводили очень яркий и запоминающийся: выпал снег при температуре воздуха тридцать градусов по Цельсию.

Вторая звучит следующим образом: достоверное событие происходит с вероятностью, равной единице. Теперь покажем, как это записать с помощью математического языка: Р(В)=1.

Третья: Случайное событие может произойти или нет, но возможность всегда варьируется в пределах от нуля до единицы. Чем ближе значение к единице, тем шансов больше; если значение приближается к нулю, вероятность очень мала. Запишем это математическим языком: 0<Р(С)<1.

Рассмотрим последнюю, четвертую аксиому, которая звучит так: вероятность суммы двух событий равняется сумме их вероятностей. Записываем математическим языком: Р(А+В)=Р(А)+Р(В).

Аксиомы теории вероятностей - это простейшие правила, которые не составит труда запомнить. Попробуем решить некоторые задачи, опираясь на уже полученные знания.

Лотерейный билет

Для начала рассмотрим простейший пример - лотерея. Представьте, что вы купили один лотерейный билет на удачу. Какова вероятность, что вы выиграете не менее двадцати рублей? Всего в тираже участвует тысяча билетов, один из которых имеет приз в пятьсот рублей, десять по сто рублей, пятьдесят по двадцать рублей, а сто - по пять. Задачи по теории вероятности основаны на том, чтобы найти возможность удачи. Сейчас вместе разберем решение выше представленного задания.

Если мы буквой А обозначим выигрыш в пятьсот рублей, то вероятность выпадения А будет равняться 0,001. Как мы это получили? Просто необходимо количество "счастливых" билетов разделить на общее их число (в данном случае: 1/1000).

В - это выигрыш в сто рублей, вероятность будет равняться 0,01. Сейчас мы действовали по тому же принципу, что и в прошлом действии (10/1000)

С - выигрыш равен двадцати рублям. Находим вероятность, она равняется 0,05.

Остальные билеты нас не интересуют, так как их призовой фонд меньше заданного в условии. Применим четвертую аксиому: Вероятность выиграть не менее двадцати рублей составляет Р(А)+Р(В)+Р(С). Буквой Р обозначается вероятность происхождения данного события, мы в предыдущих действиях уже их нашли. Осталось только сложить необходимые данные, в ответе мы получаем 0,061. Это число и будет являться ответом на вопрос задания.

Карточная колода

Задачи по теории вероятности бывают и более сложными, для примера возьмем следующее задание. Перед вами колода из тридцати шести карт. Ваша задача - вытянуть две карты подряд, не перемешивая стопку, первая и вторая карты должны быть тузами, масть значения не имеет.

Для начала найдем вероятность того, что первая карта будет тузом, для этого четыре делим на тридцать шесть. Отложили его в сторону. Достаем вторую карту, это будет туз с вероятностью три тридцать пятых. Вероятность второго события зависит от того, какую карту мы вытянули первой, нам интересно, был это туз или нет. Из этого следует, что событие В зависит от события А.

Следующим действием находим вероятность одновременного осуществления, то есть перемножаем А и В. Их произведение находится следующим образом: вероятность одного события умножаем на условную вероятность другого, которую мы вычисляем, предполагая, что первое событие произошло, то есть первой картой мы вытянули туз.

Для того чтобы стало все понятно, дадим обозначение такому элементу, как события. Вычисляется она, предполагая, что событие А произошло. Рассчитывается следующим образом: Р(В/А).

Продолжим решение нашей задачи: Р(А * В)=Р(А) * Р(В/А) или Р(А * В)=Р(В) * Р(А/В). Вероятность равняется (4/36) * ((3/35)/(4/36). Вычисляем, округляя до сотых. Мы имеем: 0,11 * (0,09/0,11)=0,11 * 0,82=0,09. Вероятность того, что мы вытянем два туза подряд, равна девяти сотым. Значение очень мало, из этого следует, что и вероятность происхождения события крайне мала.

Забытый номер

Предлагаем разобрать еще несколько вариантов заданий, которые изучает теория вероятности. Примеры решения некоторых из них вы уже видели в данной статье, попробуем решить следующую задачу: мальчик забыл последнюю цифру номера телефона своего друга, но так как звонок был очень важен, то начал набирать все по очереди. Нам необходимо вычислить вероятность того, что он позвонит не более трех раз. Решение задачи простейшее, если известны правила, законы и аксиомы теории вероятности.

Перед тем как смотреть решение, попробуйте решить самостоятельно. Нам известно, что последняя цифра может быть от нуля до девяти, то есть всего десять значений. Вероятность набрать нужную составляет 1/10.

Далее нам нужно рассматривать варианты происхождения события, предположим, что мальчик угадал и сразу набрал нужную, вероятность такого события равняется 1/10. Второй вариант: первый звонок промах, а второй в цель. Рассчитаем вероятность такого события: 9/10 умножаем на 1/9, в итоге получаем также 1/10. Третий вариант: первый и второй звонок оказались не по адресу, только с третьего мальчик попал туда, куда хотел. Вычисляем вероятность такого события: 9/10 умножаем на 8/9 и на 1/8, получаем в итоге 1/10. Другие варианты по условию задачи нас не интересуют, по этому нам осталось сложить полученные результаты, в итоге мы имеем 3/10. Ответ: вероятность того, что мальчик позвонит не более трех раз, равняется 0,3.

Карточки с числами

Перед вами девять карточек, на каждой из которых написано число от одного до девяти, цифры не повторяются. Их положили в коробку и тщательно перемешали. Вам необходимо рассчитать вероятность того, что

  • выпадет четное число;
  • двухзначное.

Перед тем как переходить к решению, оговорим, что m - это число удачных случаев, а n - это общее количество вариантов. Найдем вероятность того, что число будет четным. Не составит труда посчитать, что четных чисел четыре, это и будет наша m, всего возможно девять вариантов, то есть m=9. Тогда вероятность равняется 0,44 или 4/9.

Рассматриваем второй случай: количество вариантов девять, а удачных исходов быть вообще не может, то есть m равняется нулю. Вероятность того, что вытянутая карточка будет содержать двухзначное число, так же равняется нулю.

как онтологическая категория отражает меру возможности возникновения какого-либо сущего в каких-либо условиях. В отличие от математических и логической интерпретации этого понятия онтологическая В. не связывает себя с обязательностью количетвенного выражения. Значение В. раскрывается в контексте понимания детерминизма и характера развития в целом.

Отличное определение

Неполное определение ↓

ВЕРОЯТНОСТЬ

понятие, характеризующее количеств. меру возможности появления нек-рого события при определ. условиях. В науч. познании встречаются три интерпретации В. Классическая концепция В., возникшая из математич. анализа азартных игр и наиболее полно разработанная Б. Паскалем, Я. Бернулли и П. Лапласом, рассматривает В. как отношение числа благоприятствующих случаев к общему числу всех равновозможных. Напр., ири бросании игральной кости, имеющей 6 граней, выпадение каждой из них можно ожидать с В., равной 1/6, т. к. ни одна грань не имеет преимуществ перед другой. Подобная симметричность исходов опыта специально учитывается при организации игр, но сравнительно редко встречается при исследовании объективных событий в науке и практике. Классич. интерпретация В. уступила место статистич. концепции В., в основе к-рой лежат действит. наблюдения появления нек-рого события в ходе длит. опыта при точно фиксированных условиях. Практика подтверждает, что чем чаще происходит событие, тем больше степень объективной возможности его появления, или В. Поэтому статистич. интерпретация В. опирается на понятие относит. частоты, к-рое может быть определено опытным путем. В. как теоретич. понятие никогда не совпадает с эмпирически определяемой частотой, однако во мн. случаях она практически мало отличается от относит. частоты, найденной в результате длит. наблюдений. Многие статистики рассматривают В. как «двойник» относит. частоты, к-рая определяется при статистич. исследовании результатов наблюдений

или экспериментов. Менее реалистичным оказалось определение В. как предела относит. частот массовых событий, или коллективов, предложенное Р. Мизесом. В качестве дальнейшего развития частотного подхода к В. выдвигается диспозиционная, или пропенситивная, интерпретация В. (К. Поппер, Я. Хэккинг, М. Бунге, Т. Сетл). Согласно этой интерпретации, В. характеризует свойство порождающих условий, напр. эксперимент. установки, для получения последовательности массовых случайных событий. Именно такая установка порождает физич. диспозиции, или предрасположенности, В. к-рых может быть проверена с помощью относит. частот.

Статистич. интерпретация В. доминирует в науч. познании, ибо она отражает специфич. характер закономерностей, присущих массовым явлениям случайного характера. Во многих физич., биологич., экономич., демографич. и др. социальных процессах приходится учитывать действие множества случайных факторов, к-рые характеризуются устойчивой частотой. Выявление этой устойчивой частоты и количеств. ее оценка с помощью В. дает возможность вскрыть необходимость, к-рая прокладывает себе путь через совокупное действие множества случайностей. В этом находит свое проявление диалектика превращения случайности в необходимость (см. Ф. Энгельс, в кн.: Маркс К. и Энгельс Ф., Соч., т. 20, с. 535-36).

Логическая, или индуктивная, В. характеризует отношение между посылками и заключением недемонстративного и, в частности, индуктивного рассуждения. В отличие от дедукции, посылки индукции не гарантируют истинности заключения, а лишь делают его в той или иной степени правдоподобным. Это правдоподобие при точно сформулированных посылках иногда можно оценивать с помощью В. Значение этой В. чаще всего определяется посредством сравнит. понятий (больше, меньше или равно), а иногда и численным способом. Логич. интерпретацию часто используют для анализа индуктивных рассуждений и построения различных систем вероятностных логик (Р. Карнап, Р. Джефри). В семантич. концепции логич. В. часто определяется как степень подтверждения одного высказывания другими (напр., гипотезы ее эмпирич. данными) .

В связи с развитием теорий принятия решений и игр все большее распростраиение получает т. н. персоналистская интерпретация В. Хотя В. при этом выражает степень веры субъекта и появление нек-рого события, сами В. должны выбираться с таким расчетом, чтобы удовлетворялись аксиомы исчисления В. Поэтому В. при такой интерпретации выражает не столько степень субъективной, сколько разумной веры. Следовательно, решения, принимаемые на основе такой В., будут рациональными, ибо они не учитывают психологич. особенностей и склонностей субъекта.

С гносеологич. т. зр. различие между статистич., логич. и персоналистской интерпретациями В. состоит в том, что если первая дает характеристику объективным свойствам и отношениям массовых явлений случайного характера, то последние две анализируют особенности субъективной, познават. деятельности людей в условиях неопределенности.

ВЕРОЯТНОСТЬ

одно из важнейших понятий науки, характеризующее особое системное видение мира, его строения, эволюции и познания. Специфика вероятностного взгляда на мир раскрывается через включение в число базовых понятий бытия понятий случайности, независимости и иерархии (идеи уровней в структуре и детерминации систем).

Представления о вероятности зародились еще в древности и относились к характеристике нашего знания, при этом признавалось наличие вероятностного знания, отличающегося от достоверного знания и от ложного. Воздействие идеи вероятности на научное мышление, на развитие познания прямо связано с разработкой теории вероятностей как математической дисциплины. Зарождение математического учения о вероятности относится к 17 в., когда было положено начало разработке ядра понятий, допускающих. количественную (числовую) характеристику и выражающих вероятностную идею.

Интенсивные приложения вероятности к развитию познания приходятся на 2-ю пол. 19- 1-ю пол. 20 в. Вероятность вошла в структуры таких фундаментальных наук о природе, как классическая статистическая физика, генетика, квантовая теория, кибернетика (теория информации). Соответственно вероятность олицетворяет тот этап в развитии науки, который ныне определяется как неклассическая наука. Чтобы раскрыть новизну, особенности вероятностного образа мышления, необходимо исходить из анализа предмета теории вероятностей и оснований ее многочисленных приложений. Теорию вероятностей обычно определяют как математическую дисциплину, изучающую закономерности массовых случайных явлений при определенных условиях. Случайность означает, что в рамках массовости бытие каждого элементарного явления не зависит и не определяется бытием других явлений. В то же время сама массовость явлений обладает устойчивой структурой, содержит определенные регулярности. Массовое явление вполне строго делится на подсистемы, и относительное число элементарных явлений в каждой из подсистем (относительная частота) весьма устойчиво. Эта устойчивость сопоставляется с вероятностью. Массовое явление в целом характеризуется распределением вероятностей, т. е. заданием подсистем и соответствующих им вероятностей. Язык теории вероятностей есть язык вероятностных распределений. Соответственно теорию вероятностей и определяют как абстрактную науку об оперировании распределениями.

Вероятность породила в науке представления о статистических закономерностях и статистических системах. Последние суть системы, образованные из независимых или квазинезависимых сущностей, их структура характеризуется распределениями вероятностей. Но как возможно образование систем из независимых сущностей? Обычно предполагается, что для образования систем, имеющих целостные характеристики, необходимо, чтобы между их элементами существовали достаточно устойчивые связи, которые цементируют системы. Устойчивость статистическим системам придает наличие внешних условий, внешнего окружения, внешних, а не внутренних сил. Само определение вероятности всегда опирается на задание условий образования исходного массового явления. Еще одной важнейшей идеей, характеризующей вероятностную парадигму, является идея иерархии (субординации). Эта идея выражает взаимоотношения между характеристиками отдельных элементов и целостными характеристиками систем: последние как бы надстраиваются над первыми.

Значение вероятностных методов в познании заключается в том, что они позволяют исследовать и теоретически выражать закономерности строения и поведения объектов и систем, имеющих иерархическую, «двухуровневую» структуру.

Анализ природы вероятности опирается на частотную, статистическую ее трактовку. Вместе с тем весьма длительное время в науке господствовало такое понимание вероятности, которое получило название логической, или индуктивной, вероятности. Логическую вероятность интересуют вопросы обоснованности отдельного, индивидуального суждения в определенных условиях. Можно ли оценить степень подтверждения (достоверности, истинности) индуктивного заключения (гипотетического вывода) в количественной форме? В ходе становления теории вероятностей такие вопросы неоднократно обсуждались, и стали говорить о степенях подтверждения гипотетических заключений. Эта мера вероятности определяется имеющейся в распоряжении данного человека информацией, его опытом, воззрениями на мир и психологическим складом ума. Во всех подобных случаях величина вероятности не поддается строгим измерениям и практически лежит вне компетенции теории вероятностей как последовательной математической дисциплины.

Объективная, частотная трактовка вероятности утверждалась в науке со значительными трудностями. Первоначально на понимание природы вероятности оказали сильное воздействие те философско-методологические взгляды, которые были характерны для классической науки. Исторически становление вероятностных методов в физике происходило под определяющим воздействием идей механики: статистические системы трактовались просто как механические. Поскольку соответствующие задачи не решались строгими методами механики, то возникли утверждения, что обращение к вероятностным методам и статистическим закономерностям есть результат неполноты наших знаний. В истории развития классической статистической физики предпринимались многочисленные попытки обосновать ее на основе классической механики, однако все они потерпели неудачу. Основания вероятности состоят в том, что она выражает собою особенности структуры определенного класса систем, иного, чем системы механики: состояние элементов этих систем характеризуется неустойчивостью и особым (не сводящимся к механике) характером взаимодействий.

Вхождение вероятности в познание ведет к отрицанию концепции жесткого детерминизма, к отрицанию базовой модели бытия и познания, выработанных в процессе становления классической науки. Базовые модели, представленные статистическими теориями, носят иной, более общий характер: они включают в себя идеи случайности и независимости. Идея вероятности связана с раскрытием внутренней динамики объектов и систем, которая не может быть всецело определена внешними условиями и обстоятельствами.

Концепция вероятностного видения мира, опирающаяся на абсолютизацию представлений о независимости (как и прежде парадигма жесткой детерминации), в настоящее время выявила свою ограниченность, что наиболее сильно сказывается при переходе современной науки к аналитическим методам исследования сложноорганизованных систем и физико-математических основ явлений самоорганизации.

Отличное определение

Неполное определение ↓

Хотите узнать, какие математические шансы на успех вашей ставки? Тогда для вас есть две хорошие новости. Первая: чтобы посчитать проходимость, не нужно проводить сложные расчеты и тратить большое количество времени. Достаточно воспользоваться простыми формулами, работа с которыми займёт пару минут. Вторая: после прочтения этой статьи вы с лёгкостью сможете рассчитывать вероятность прохода любой вашей сделки.

Чтобы верно определить проходимость, нужно сделать три шага:

  • Рассчитать процент вероятности исхода события по мнению букмекерской конторы;
  • Вычислить вероятность по статистическим данным самостоятельно;
  • Узнать ценность ставки, учитывая обе вероятности.

Рассмотрим подробно каждый из шагов, применяя не только формулы, но и примеры.

Быстрый переход

Подсчёт вероятности, заложенной в букмекерские коэффициенты

Первый шаг – необходимо узнать, с какой вероятностью оценивает шансы на тот или иной исход сам букмекер. Ведь понятно, что кэфы букмекерские конторы не ставят просто так. Для этого пользуемся следующей формулой:

P Б =(1/K)*100%,

где P Б – вероятность исхода по мнению букмекерской конторы;

K – коэффициент БК на исход.

Допустим, на победу лондонского Арсенала в поединке против Баварии коэффициент 4. Это значит, что вероятность его виктории БК расценивают как (1/4)*100%=25%. Или же Джокович играет против Южного. На победу Новака множитель 1.2, его шансы равны (1/1.2)*100%=83%.

Так оценивает шансы на успех каждого игрока и команды сама БК. Осуществив первый шаг, переходим ко второму.

Расчёт вероятности события игроком

Второй пункт нашего плана – собственная оценка вероятности события. Так как мы не можем учесть математически такие параметры как мотивация, игровой тонус, то воспользуемся упрощённой моделью и будем пользоваться только статистикой предыдущих встреч. Для расчёта статистической вероятности исхода применяем формулу:

P И =(УМ/М)*100%,

где P И – вероятность события по мнению игрока;

УМ – количество успешных матчей, в которых такое событие происходило;

М – общее количество матчей.

Чтобы было понятней, приведём примеры. Энди Маррей и Рафаэль Надаль сыграли между собой 14 матчей. В 6 из них был зафиксирован тотал меньше 21 по геймам, в 8 – тотал больше. Необходимо узнать вероятность того, что следующий поединок будет сыгран на тотал больше: (8/14)*100=57%. Валенсия сыграла на Месталье против Атлетико 74 матча, в которых одержала 29 побед. Вероятность победы Валенсии: (29/74)*100%=39%.

И это все мы узнаем только благодаря статистике предыдущих игр! Естественно, что на какую-то новую команду или игрока такую вероятность просчитать не получится, поэтому такая стратегия ставок подойдет только для матчей, в которых соперники встречаются не первый раз. Теперь мы умеем определять букмекерскую и собственную вероятности исходов, и у нас есть все знания, чтобы перейти к последнему шагу.

Определение ценности ставки

Ценность (валуйность) пари и проходимость имеют непосредственную связь: чем выше валуйность, тем выше шанс на проход. Рассчитывается ценность следующим образом:

V= P И *K-100%,

где V – ценность;

P И – вероятность исхода по мнению беттера;

K – коэффициент БК на исход.

Допустим, мы хотим поставить на победу Милана в матче против Ромы и подчитали, что вероятность победы «красно-черных» 45%. Букмекер предлагает нам на это исход коэффициент 2.5. Будет ли такое пари ценным? Проводим расчёты: V=45%*2.5-100%=12.5%. Отлично, перед нами ценная ставка с хорошими шансами на проход.

Возьмём другой случай. Мария Шарапова играет против Петры Квитовой. Мы хотим заключить сделку на победу Марии, вероятность которой по нашим расчетам 60%. Конторы предлагают на этот исход множитель 1.5. Определяем валуйность: V=60%*1.5-100=-10%. Как видим, ценности эта ставка не представляет и от неё следует воздержаться.

Понимаю, что всем хочется заранее знать, как завершится спортивное мероприятие, кто одержит победу, а кто проиграет. Обладая подобной информацией, можно без страха делать ставки на спортивные мероприятия. Но можно ли вообще и если да, то как рассчитать вероятность события?

Вероятность – это величина относительная, поэтому не может с точностью говорить о каком-либо событии. Данная величина позволяет проанализировать и оценить необходимость совершения ставки на то или иное соревнование. Определение вероятностей – это целая наука, требующая тщательного изучения и понимания.

Коэффициент вероятности в теории вероятности

В ставках на спорт есть несколько вариантов исхода соревнования:

  • победа первой команды;
  • победа второй команды;
  • ничья;
  • тотал.

У каждого исхода соревнования есть своя вероятность и частота, с которой данное событие совершится при условии сохранения начальных характеристик. Как уже говорили ранее, невозможно точно рассчитать вероятность какого-либо события – оно может совпасть, а может и не совпасть. Таким образом, ваша ставка может как выиграть, так и проиграть.

Точного 100% предугадывания результатов соревнования не может быть, так как на исход матча влияет множество факторов. Естественно, и букмекеры не знают заранее исход матча и лишь предполагают результат, принимая решение на своей системе анализа и предлагают определенные коэффициенты для ставок.

Как посчитать вероятность события?

Допустим, что коэффициент букмекера равен 2. 1/2 – получаем 50%. Получается, что коэффициент 2 равен вероятности 50%. По тому же принципу можно получить безубыточный коэффициент вероятности – 1/вероятность.

Многие игроки думают, что после нескольких повторяющихся поражений, обязательно произойдет выигрыш — это ошибочное мнение. Вероятность выигрыша ставки не зависит от количества поражений. Даже если вы выбрасываете несколько орлов подряд в игре с монеткой, вероятность выбрасывания решки останется прежней – 50%.