Вполне привычная картина - концертный зал, на сцене скрипач-виртуоз, зал заполнен многочисленными любителями музыки, внимающими чарующим звукам. Не касаясь мастерства исполнителя, все происходящее становится возможным благодаря эффекту акустического резонанса. Так резонанс?

При упоминании этого термина сразу же вспоминается старинная история о ротой марширующих солдат. Бойцы, взойдя на него, продолжали идти строевым шагом, в ногу. В результате мост разрушился.

Или самая обычная картинка - ребенок на качелях. И кто-то рядом, раскачивающий их. Незначительные усилия, прикладываемые в нужный момент, позволяют добиться большой амплитуды колебаний и доставить малышу огромное удовольствие.

Не вдаваясь в математическое описание происходящего явления, попробуем качественно понять, что такое резонанс. Учебник физики определяет этот эффект как усиление амплитуды колебаний системы при совпадении частоты внешнего воздействия и собственной частоты. Небольшое пояснение. Частота колебаний - число колебаний в секунду.

Да, не совсем понятно, слова вроде бы все знакомые - резонанс, физика, частота А что это значит?

Для простоты восприятия вспомним другой пример - между двух опор (пусть это будут два берега ручья) лежит длинная широкая доска, она немного покачивается, колеблется, но выглядит надежной. Перейти через ручей вроде бы просто, вставай на доску и иди. Но вот какая незадача. При какой-то определённой скорости движения, или по-другому говоря, частоте шагов, доска начинает сильно раскачиваться, угрожая сбросить ходока. В этом случае опять выполняются условия резонанса - частота колебаний самой доски совпадает с частотой шагов пешехода. В результате амплитуда колебаний значительно увеличивается, итогом такого усиления могут стать неожиданные водные процедуры.

Подобное явление чрезвычайно широко распространено в самых разных областях. В электронике, медицине, в музыке, с чего и началось описание эффекта резонанса. Такое явление зачастую бывает полезным, позволяя, например, усиливать слабый сигнал. Звук струны скрипки усиливается ее корпусом, выступающим как резонатор, т.е. усилитель на какой-то определенной частоте. А звук самой скрипки усиливается благодаря хорошей акустике помещения.

Немного другое применение резонанса - усиление сигнала радиостанции. Опять все просто. Радиоволны доносят сигнал до антенны, оттуда он поступает в специальный входной контур, изменяя параметры которого можно усиливать сигнал нужной частоты. Этим мы и занимаемся, когда крутим ручку настройки приемника в поисках нужной нам радиостанции. В результате такого усиления сигнал выделенной радиостанции становится сильнее и успешно воспринимается приемником.

Из приведенных примеров становится понятным ответ на вопрос о том, что такое резонанс. Это общее увеличение усилия, полученное благодаря синхронизации возможностей самой системы и внешнего воздействия. Как итоговый пример - попытка выбраться из грязи на автомобиле методом “раскачки”. Водитель начинает попеременно двигаться на машине вперед и назад. Назад, затем разгон вперед, при неудаче опять разгон, но уже назад, и опять вперед. При таком подходе мощность двигателя суммируется с инерцией движения и во многих случаях позволяет преодолеть трудное место.

Даже того скромного количества приведенных примеров достаточно для понимания того, насколько широко применяется явление резонанса в технике и повседневной жизни.

В приведенном материале дан ответ на вопрос о том, что такое резонанс. Рассмотрены примеры проявления резонансных явлений в различных областях техники и культуры.

Из курса обучения в школе и институте многие вынесли определение резонанса, как явления постепенного или резкого возрастания амплитуды колебаний некоторого тела, когда к нему прикладывается внешняя сила с определенной частотой. Однако ответить практическими примерами на вопрос, что такое резонанс, могут немногие.

Физическое определение и привязка к объектам

Резонанс, согласно определению, можно понять как достаточно простой процесс:

  • существует тело, находящееся в состоянии покоя или колеблющееся с определенной частотой и амплитудой;
  • на него действует внешняя сила с собственной частотой;
  • в случае, когда частота внешнего воздействия совпадает с собственной частотой рассматриваемого тела, возникает постепенное или резкое возрастание амплитуды колебаний.

Однако, на практике явление рассматривается в виде гораздо более сложной системы. В частности, тело может быть представлено не как единый объект, а сложная структура. Резонанс возникает при совпадении частоты внешней силы с так называемой суммарной эффективной колебательной частотой системы.

Резонанс, если рассматривать его с позиций физического определения, непременно должен приводить к разрушению объекта. Однако, на практике существует понятие добротности колебательной системы. В зависимости от ее значения, резонанс может приводить к различным эффектам:

  • при низкой добротности система не способна в большой мере сохранять поступающие извне колебания. Поэтому наблюдается постепенное повышение амплитуды собственных колебаний до того уровня, когда сопротивление материалов или соединений не приводит к стабильному состоянию;
  • высокая, близкая к единице добротность - самая опасная среда, в которой резонанс приводит, зачастую, к необратимым последствиям. Среди них может быть как механическое разрушение объектов, так и выделение большого количества тепла на уровнях, которые могут привести к возгоранию.

Также, резонанс возникает не только при действии внешней силы колебательного характера. Степень и характер реакции системы, в большой степени, отвечает за последствия действия направленных извне сил. Поэтому резонанс может возникнуть в самых разных случаях.

Хрестоматийный пример

Самый употребительный пример, которым описывается явление резонанса - это случай, когда рота солдат шла по мосту и обрушила его. С физической точки зрения в этом явлении нет ничего сверхъестественного. Шагая в ногу, солдаты вызвали колебания , которые совпали с собственной эффективной колебательной частотой системы моста.

Множество людей посмеивалось над данным примером, считая явление только теоретически возможным. Но достижения технического прогресса доказали теорию.

В сети существует реальное видео поведения пешеходного моста в Нью-Йорке, который постоянно сильно раскачивался и едва не рухнул. Автор творения, которое собственной механикой подтверждает теорию, когда резонанс возникает от движения людей, даже хаотического - французский архитектор, автор подвесного моста Виадук Мийо, сооружения с самыми высокими опорными колоннами.

Инженеру пришлось потратить много времени и денег, чтобы снизить добротность системы пешеходного моста до приемлемого уровня и добиться того, чтобы не было значительных колебаний. Пример работы над данным проектом - это иллюстрация того, как последствия резонанса можно обуздать в системах с низкой добротностью.

Примеры, которые повторяют многие

Еще один пример, который даже участвует в анекдотах - это раскалывание посуды звуковыми колебаниями, от занятий на скрипке и даже пения. В отличие от роты солдат, данный пример неоднократно наблюдался и даже специально проверялся. Действительно, возникающий при совпадении частот резонанс приводит к раскалыванию тарелок, бокалов, чашек и другой посуды.

Это пример развития процесса в условиях системы с высокой добротностью. Материалы, из которых сделана посуда - это достаточно упругие среды , в которых колебания распространяются с малыми затуханиями. Добротность таких систем очень высока, и хотя полоса совпадения частот довольно узкая, резонанс приводит к сильному увеличению амплитуды, в результате чего материал разрушается.

Пример действия постоянной силы

Еще один пример, где проявилось разрушительное действие - это рухнувший Такомский подвесной мост. Данный случай и видео волнообразного раскачивания конструкции даже рекомендовано к просмотру на факультетах физики университетов, как самый хрестоматийный пример такого явления резонанса.

Разрушение подвесного моста под действием ветра - это иллюстрация того, как относительно постоянная сила вызывает резонанс. Происходит следующее:

  • порыв ветра отклоняет часть конструкции - внешняя сила способствует возникновению колебаний;
  • при обратном движении конструкции, сопротивления воздуха недостаточно, чтобы погасить колебание или снизить его амплитуду;
  • вследствие упругости системы, начинается новое движение, которое усиливает ветер, продолжающий дуть в одном направлении.

Это пример поведения комплексного объекта, где резонанс развивается на фоне высокой добротности и значительной упругости, под действием постоянного воздействия силы в одном направлении. К сожалению, Такомский мост - это не единственный пример обрушения конструкций. Случаи наблюдались и наблюдаются по всему миру, в том числе и в России.

Резонанс может применяться и в контролируемых, четко определенных условиях. Среди всего множества примеров можно легко вспомнить радиоантенны, даже разрабатываемые любителями. Здесь применяется принцип резонанса при поглощении энергии электромагнитной волны . Каждая система разрабатывается под отдельную полосу частот, в которой наиболее эффективна.

Установки МРТ применяют другой тип явления - различное поглощение колебаний клетками и структурами человеческого тела. Процесс ядерного магнитного резонанса использует излучение различной частоты. Резонанс, возникающий в тканях, приводит к легкому распознаванию конкретных структур. Меняя частоту, можно исследовать те или иные области, решать разнообразные задачи.

Прежде чем приступить к знакомству с явлениями резонанса, следует изучить физические термины, связанные с ним. Их не так много, поэтому запомнить и понять их смысл будет несложно. Итак, обо всем по порядку.

Что такое амплитуда и частота движения?

Представьте обычный двор, где на качелях сидит ребенок и машет ножками, чтобы раскачаться. В момент, когда ему удается раскачать качели и они достигают из одной стороны в другую, можно подсчитать амплитуду и частоту движения.

Амплитуда - это наибольшая длина отклонения от точки, где тело находилось в положении равновесия. Если брать наш пример качелей, то амплитудой можно считать наивысшую точку, до которой раскачался ребенок.

А частота - это количество колебаний или колебательных движений в единицу времени. Измеряется частота в Герцах (1 Гц = 1 колебание в секунду). Возвратимся к нашим качелям: если ребенок проходит за 1 секунду только половину всей длины качания, то его частота будет равна 0,5 Гц.

Как частота связана с явлением резонанса?

Мы уже выяснили, что частота характеризует число колебаний предмета в одну секунду. Представьте теперь, что слабо качающемуся ребенку взрослый человек помогает раскачаться, раз за разом подталкивая качели. При этом данные толчки также имеют свою частоту, которая будет усиливать либо уменьшать амплитуду качания системы "качели-ребенок".

Допустим, взрослый толкает качели в то время, когда они движутся навстречу к нему, в таком случае частота не будет увеличивать амлитуду движения То есть сторонняя сила (в данном случае толчки) не будет способствовать усиления колебания системы.

В случае если частота, с которой взрослый раскачивает ребенка, будет численно равна самой частоте колебания качелей, может возникнуть являение резонанса. Другими словами, пример резонанса - это совпадение частоты самой системы с частотой вынужденных колебаний. Логично представить, что частота и резонанс взаимосвязаны.

Где можно наблюдать пример резонанса?

Важно понимать, что примеры проявления резонанса встречаются практически во всех сферах физики, начиная от звуковых волн и заканчивая электричеством. Смысл резонанса заключается в том, что когда частота вынуждающей силы равна собственной частоте системы, то в этот момент достигает наивысшего значения.

Следующий пример резонанса даст понимание сути. Допустим, вы шагаете по тонкой доске, перекинутой через речку. Когда частота ваших шагов совпадет с частотой или периодом всей системы (доска-человек), то доска начинает сильно колебаться (гнуться вниз и вверх). Если вы продолжите двигаться такими же шагами, то резонанс вызовет сильную амплитуду колебания доски, которая выходит за пределы допустимого значения системы и это в конечном счете приведет к неминуемой поломке мостика.

Существуют также те сферы физики, где можно использовать такое явление, как полезный резонанс. Примеры могут удивить вас, ведь обычно мы используем его интуитивно, даже не догадываясь о научной стороне вопроса. Так, например, мы используем резонанс, когда пытаемся вытащить машину из ямы. Вспомните, ведь легче всего достичь результат только тогда, когда толкаешь машину в момент ее движения вперед. Этот пример резонанса усиливает амплитуду движения, тем самым помогая вытащить машину.

Примеры вредного резонанса

Сложно сказать, какой резонанс в нашей жизни встречается больше: хороший или же наносящий нам вред. Истории известно немалое количество ужасающих последствий явления резонанса. Вот самые известные события, на которых можно наблюдать пример резонанса.

  1. Во Франции, в городе Анжера, в 1750 году отряд солдат шел в ногу через цепной мост. Когда частота их шагов совпала с частотой моста, размахи колебаний (амплитуда) резко увеличились. Наступил резонанс, и цепи оборвались, а мост обрушился в реку.
  2. Бывали случаи, когда в деревнях дом был разрушен из-за проезжающего по главной дороге грузового автомобиля.

Как видите, резонанс может иметь весьма опасные последствия, вот почему инженерам следует тщательно изучать свойства строительных объектов и правильно вычислять их частоты колебаний.

Полезный резонанс

Резонанс не ограничивается только плачевными последствиями. При внимательном изучении окружающего мира можно наблюдать множество хороших и выгодных для человека результатов резонанса. Вот один яркий пример резонанса, позвляющий получать людям эстетическое удовольствие.

Устройсто многих музыкальных инструментов работает по принципу резонанса. Возьмем скрипку: корпус и струна образуют единую колебательную систему, внутри которой имеется штифт. Именно через него передаются частоты колебаний из верхней деки в нижнюю. Когда лютьер водит смычком по струне, то последняя, подобно стреле, побеждает своей трение канифольной поверхности и летит в обратную сторону (начинает движение в противоположную область). Возникает резонанс, который передается в корпус. А внутри его есть специальные отверстия - эфы, сквозь которые резонанс выводится наружу. Именно таким образом он контролируется во многих струнных инструментах (гитара, арфа, виолончель и др).

Под явлением резонанса стоит понимать мгновенный рост величины амплитуды колебаний объекта под воздействием внешнего источника энергии периодического характера воздействия с аналогичным значением частоты.

В статье мы рассмотрим природу возникновения резонанса на примере механического (математического) маятника, электрического колебательного контура и ядерного магнитного резонатора. Для того, чтобы проще представить физические процессы, статья сопровождается многочисленными вставками в виде практических примеров. Цель статьи — объяснить на примитивном уровне явление резонанса в разных областях его возникновения без математических формул.

Самая простая модель, которая может наглядно показать колебания, это простейший маятник, а точнее математический маятник. Колебания разделяют на свободные и вынужденные. Первоначально воздействующая энергия на маятник обеспечивает в теле свободные колебания без присутствия внешнего источника переменной энергии воздействия. Данная энергия может быть как кинетической, так и потенциальной.

Здесь не имеет значение насколько сильно или нет качается сам маятник, — время, потраченное на прохождения его пути в прямом и обратном направлении, сохраняется неизменным. Во избежание недоразумений с затуханием колебаний вследствие трения о воздух стоит выделить, что для свободных колебаний должны соблюдаться условия возврата маятника в точку равновесия и отсутствия трения.

А вот частота в свою очередь напрямую зависит от величины длины нити маятника. Чем короче нить, тем выше частота и наоборот.

Возникающая естественная частота тела под воздействием первоначально приложенной силы называется резонансной частотой.

Все тела, которым свойственны колебания, совершают их с заданной частотой. Для поддержания в теле незатухающих колебаний необходимо обеспечить постоянную периодическую энергетическую «подпитку». Это достигается воздействием в одновременный такт колебаний тела постоянной силы с определенным периодом. Таким образом возникающие колебания в теле под действием периодической силы снаружи называют вынужденными.

В какой-то момент внешних воздействий возникает резкий скачок амплитуды. Такой эффект возникает если периоды внутренних колебаний тела совпадают с периодами внешней силы и называется резонансом. Для возникновения резонанса достаточно совсем небольших величин внешних источников воздействия, но с обязательным условием повторения в такт. Естественно, при фактических расчетах в земных условиях не стоит забывать о действии сил трения и сопротивления воздуха на поверхность тело.

Простые примеры резонанса из жизни

Начнем с примера возникновения резонанса с которым сталкивался каждый из нас — это обычные качели на детской площадке.

Резонанс качелей

В ситуации с детскими качелями в момент приложения рукой силы при прохождения одной из двух симметричных высших точек возникает скачек амплитуды с соответствующим ростом энергии колебания. В быту явление резонанса могли наблюдать в ванной комнате любители вокала.

Звуковой акустический резонанс при пении в ванной

Каждый из поющих в ванной комнате из кафеля наверняка замечал как изменяется звук. Звуковые волны отражаясь о кафель в замкнутом пространстве ванной становятся громче и продолжительнее. Но этому воздействию подвержены не все ноты песни вокалиста, а лишь те, которые резонируют в один такт со звуковой резонансной частотой воздуха.

Для каждого из вышеперечисленного случая возникновения резонанса существует внешняя возбуждающая энергия: в случае с качелями элементарный толчок рукой, совпадающий с фазой колебания качели, и в случае с акустическим эффектом в ванной — голос человека, отдельные частоты которого совпадали с определенными частотами воздуха.

Звуковой резонанс бокала — опыт в домашних условиях

Данный опыт можно провести в домашних условиях. Для него необходим хрустальный бокал и закрытое помещение без посторонних шумов для чуткого восприятия аккустического эффекта. Смоченный водой палец передвигаем по краю бокала с «рваными» периодическими ускорениями. В процессе подобных движений вы можете наблюдать возникновение звенящего звука. Данный эффект возникает вследствие передачи энергии движения, частота колебание которой совпадает с собственными частотой колебания бокала.

Разрушение мостов вследствие резонанса — случай с Такомским мостом

Все служившие в армии помнят, как при прохождении строем по мосту от командира звучала команда: «Отставить в ногу!». Почему же нельзя было проходить строем по мосту «в ногу»? Оказывается, при прохождении строем по мосту с одновременным поднятием выпрямленной ноги до уровня колена военнослужащие опускают плоскость подошвы в один такт с усилием, которое сопровождается характерным шлепком.

Шаг военнослужащих сливается в один единый такт, создавая скачкообразную внешнюю прикладываемую энергию для моста с определенной величиной колебаний. В случае если собственная частота колебаний моста совпадет с колебанием шага солдат «в ногу» — произойдет резонанс, энергия которого может привести к разрушительным воздействиям конструкции моста.

Хотя случаи полного разрушения моста и не зафиксированы при прохождении солдат «в ногу», но известнее случай разрушения Такомского моста через пролив Такома-Нэрроуз в штате Вашингтон США в 1940 году.

Одна из причин вероятных причин разрушения — механический резонанс, который возник вследствие совпадения частоты ветрового потока с внутренней собственной частотой моста.

Резонанс тока в электрических цепях

Если в механике явление резонанса можно объяснить сравнительно просто, то в электричестве все на пальцах не объяснить. Для понимания необходимы элементарные знания физики электричества. Резонанс, создаваемый в электрической цепи, может возникать при условии наличия колебательного контура. Какие элементы необходимы для создания колебательного контура в электрической сети? Прежде всего цепь должна быть подключена к источнику электрической энергии.

В электросети простейший колебательный контур состоит из конденсатора и катушки индуктивности.

Конденсатор, состоящий внутри из двух металлических пластин разделенных диэлектрическими изоляторами, способен хранить электрическую энергию. Аналогичным свойством обладает и катушка индуктивности, выполненная в виде спиралеобразных витков проводника электричества.

Взаимное соединение конденсатора и катушки индуктивности в электрической сети, образующей колебательный контур, может быть как параллельным так и последовательным. В следующем видеопособии для демонстрации резонанса приводят пример последовательного способа включения.

Колебания электрического тока внутри контура возникает под действием электроэнергии. Однако, не все поступающие сигналы, а точнее его частоты, служат источником возникновения резонанса, а лишь только те, частота которых совпадает с резонансной частотой контура. Остальные, не участвующие в процессе, подавляются в общем потоке сигнала. Регулировать резонансную частоту возможно при помощи изменения значений емкости конденсатора и индуктивности катушки.

Возвращаясь к физике резонанса в механических колебаниях, он особенно выражен при минимальных значениях сил трения. Показатель трения сопоставляется в электрической цепи сопротивлению, увеличение которого ведет к нагреву проводника встледствие превращения электрической энергии во втрутреннюю энергию проводника. Поэтому, как и в случае с механикой, в колебательном электрическом контуре резонанс четко выражен при низком активном сопротивлении.

Пример электрического резонанса в процессе настройки ТВ и радиоприемников

В отличие от резонанса в механике, который может негативно влиять на материалы конструкций вплоть до разрушения, в электрических целях его вовсю используют в полезном функциональном назначении. Один из примеров применения — настройка ТВ и радиопрограмм в приемниках.

Радиоволны соответствующей частоты достигают приемных антенн и вызывают небольшие электрические колебания. Далее сигнал, включающий весь пул транслируемых передач, поступает в усилитель. Настроенный на определенную частоту в соответствии со значением регулируемой емкости конденсатора, колебательный контур принимает только тот сигнал, частота которого совпадает с его собственной.

В радиоприемнике установлен колебательный контур. Для настройки на станцию вращают рукоятку конденсатора переменной емкости, меняя положение его пластин и соответственно меняя резонансную частоту контура.

Вспомните аналоговый радиоприемник «Океан» времен СССР, ручка настройки каналов в котором есть ни что иное как регулятор изменения емкости конденсатора, положение которого меняет резонансную частоту контура.

Ядерный магнитный резонанс

Отдельные виды атомов содержат ядра, которые можно сравнить с миниатюрными магнитами. Под влиянием мощного внешнего магнитного поля ядра атомов меняют свою ориентацию в соответствии со взаимным расположением своего собственного магнитного поля по отношению к внешнему. Внешний сильный электромагнитный импульс поглощается атомом вследствие чего происходит его переориентация. Как только источник импульса прекращает свое действие ядра возвращаются на свои исходные позиции.

Ядра в зависимости от принадлежности к тому или иному атому способны принимать энергию в определенном диапазоне частот. Смена позиции ядра происходит в один такт с внешним колебаниям электромагнитного поля, что и служит причиной возникновения так называемого ядерного магнитного резонанса (сокращенно ЯМР). В научном мире этот вид резонанса используется в целях изучения атомных связей в рамках сложных молекул. Используемый в медицине метод отображения магнитного резонанса (ОМР) позволяет выводить результаты сканирования внутренних человеческих органов на дисплей для постановки диагноза и назначения лечения.

Магнитное поле ОМР сканера, формируемое при помощи катушек индуктивности, создает излучение высокой частоты под воздействием которого водорода изменяют свою ориентацию при условии совпадении своих собственных частот с внешним. В результате полученных данных с датчиков формируется графическая картинка на мониторе.

Если сравнивать метод ЯМР и ОМР относительно излучения, то сканирование с помощью ядерного магнитного резонатора менее вредно, чем ОМР. Также при исследовании мягких тканей технология ЯМР показала большую эффективность в отражении детализации исследуемого участка ткани.

Что такое спектрография

Взаимная связь между атомами в молекуле не строго жесткая, при изменении которой молекула переходит в состояние колебания. Частота колебаний взаимных связей атомов меняет соответственно резонансную частоту молекул. С помощью излучения электромагнитных волн в ИК спектре можно вызвать вышеуказанные колебания атомных связей. Данный метод под названием инфракрасная спектрография используется в научных лабораториях для изучения состава исследуемого материала.

Явление резонанса известно давно. Любая колебательная система, механическая или электрическая, имеет определенную длительность (период) колебаний. Воздействуя на колебательную систему с частотой собственных колебаний, можно при минимальных затратах энергии резко увеличить амплитуду колебания. Говорят, что система (колебательный контур в электротехнике) вошла в резонанс.

Наиболее старое описание резонанса составлено в начале 17-го века итальянским ученым Галилео Галилеем на примерах маятника и колебаний струн. Маятник наиболее ярко демонстрирует явление резонанса. Груз, подвешенный на нити, при отклонении от вертикали стремится вернуться в устойчивое состояние, колеблясь вокруг него с постоянной частотой.

Подталкивая груз с частотой его собственных колебаний, можно легко увеличить высоту подъема даже при значительной массе. Дети легко раскачивают самые тяжелые качели.

Свойства резонанса

Важнейшее свойство резонанса: чем ближе частоты воздействия к собственной, тем более резким становится возрастание амплитуды колебаний. При отсутствии потерь энергии (трение, упругие и пластические деформации, влияние гравитационных сил и так далее) амплитуда колебаний возрастает до бесконечности, вплоть до разрушения механической системы.

Добротность колебательной системы

Одним из параметров колебательной системы является добротность. Добротность определяет ширину резонанса, то есть отзывчивость колебательной системы к внешним воздействиям с частотой, близким к резонансной. Чем выше добротность, тем более точным должно быть внешнее воздействие. Анализ показывает, что добротность определяет расход энергии в системе во время свободных колебаний. Скорость затухания колебаний в свободной системе обратно пропорциональна ее добротности.

Положительные и отрицательные стороны резонанса

Явление механического резонанса может нести как пользу, так и вред. Одно из первых практических применений было исполнено при изготовлении колоколов. Перемещение тяжелого языка колокола невозможно хаотически, а только при знании его периода колебаний. Все струнные и язычковые духовые инструменты также используют данное явление. Наиболее полно исследован резонанс колебаний струны при изменении ее длины, толщины и натяжения. Изменяя длину струн, прижимая их к металлическим ладам на грифе инструмента, музыканты извлекают звуки различной частоты.

Резонанс находит применение в язычковых частотомерах. Та пластина (язычок), резонансная частота которой совпадает с измеряемой или наиболее близка к ней, имеет максимальный размах колебаний.

Механический резонанс часто приводит к разрушению механических конструкций. Классическим примером может служить мост, который разрушился во время прохождения по нему марширующего строя солдат. С тех пор запрещено переходить мосты, маршируя «в ногу». Увеличивающаяся амплитуда колебаний упругой подвески транспортных средств способна вызвать опрокидывание автомобиля или железнодорожного вагона. Чтобы снизить амплитуду колебаний, необходимо делать амортизацию таким образом, чтобы частота собственных колебаний лежала вне диапазона возможных воздействий либо снизить добротность колебательной системы.

В автотранспорте это достигается применением газовых или жидкостных амортизаторов, которые гасят колебания пружинных элементов подвески. В железнодорожных вагонах на колесных тележках устанавливают несколько комплектов пружин с разной жесткостью. Этим достигается «размытие» резонанса. В пассажирских вагонах тележки дополнительно комплектуются амортизаторами для плавного гашения колебаний. Их устройство полностью аналогично автомобильным амортизаторам. На судах установлены, так называемые, «успокоители качки».

Электромеханические резонаторы

В радиотехнике существует группа приборов, где используются пъезоэлектрический эффект и механический резонанс. Это кварцевые резонаторы и электромеханические фильтры.

Пьезоэффект выражается в изменении линейных размеров некоторых веществ под действием приложенного напряжения. Деформация материала происходит только от размеров кристалла, но не связана с величиной приложенного напряжения. Данный эффект обратим, то есть, деформируя элемент, можно получить разность потенциалов. Таким образом, значения деформации и разности потенциалов зависят от первоначальных размеров кристалла и находятся в жесткой связи.

Наибольшим образом явление пьезоэлектричества проявляется в пластинках кварца, вырезанного из монокристалла в определенном направлении. На противоположных сторонах пластинки находятся металлические обкладки для подключения в электрическую цепь. Изменяя линейные размеры кварцевой пластинки, можно получать различные значения резонансной частоты.

Добротность полученного резонатора чрезвычайно велика, а стабильность по частоте составляет 10-6 Гц.

Группа кварцевых резонаторов, соединенных в цепь, образует частотный фильтр с очень хорошими свойствами: высокой добротностью, точной установкой полосы пропускания или частотой среза.

К сведению. Фильтры и частотозадающие цепи на кварцевых резонаторах используются там, где важна высокая стабильность: в радиоприемных и передающих устройствах, электронных часах, цифровой технике.

Достоинства кварцевых фильтров:

  • Точность поддержания частоты без необходимости настройки;
  • Высокая добротность;
  • Малые габаритные размеры (до долей миллиметра);
  • Высокая надежность и долговечность;
  • Слабая зависимость от температуры.

Точность частоты резонанса играет отрицательную роль там, где существует необходимость в перестройке частоты, поскольку параметры резонатора изменить невозможно. На помощь приходят цифровые синтезаторы частоты, в которых задающий генератор стабилизирован кварцевым элементом, а импульсы на выходе образуется при помощи логических операций над цифровой последовательностью.

Видео