Слайд 1

    Периодический закон и Периодическая система химических элементов Д.И.Менделеева “Мощь и сила науки во множестве фактов, цель в обобщении этого множества и возведении их к началам… Собрание фактов и гипотез – это ещё не наука; оно есть только преддверие её, мимо которого нельзя прямо войти в святилище науки. На этих преддвериях надпись – наблюдения, предложения, опыт”. Д.И. Менделеев сайт

    Слайд 2

    Первые попытки систематизации элементов В 1829 г немецкий химик Иоган Вольфганг Дёберейнер сформулировал закон триад.

    Слайд 3

    Разбить все известные элементы на триады Дёберейнеру, естественно, не удалось, тем не менее, закон триад явно указывал на наличие взаимосвязи между атомной массой и свойствами элементов и их соединений. Все дальнейшие попытки систематизации основывались на размещении элементов в порядке возрастания их атомных весов.

    Слайд 4

    Первые попытки систематизации элементов В 1843 г Леопольд Гмелинпривёл таблицу химически сходных элементов, расставленных по группам в порядке возрастания "соединительных масс". Вне групп элементов, вверху таблицы, Гмелин поместил три "базисных" элемента – кислород, азот и водород. Под ними были расставлены триады, а также тетрады и пентады (группы из четырех и пяти элементов), причём под кислородом расположены группы металлоидов (по терминологии Берцелиуса), т.е. электроотрицательных элементов; электроположительные и электроотрицательные свойства групп элементов плавно изменялись сверху вниз.

    Слайд 5

    Часть таблицы Леопольда Гмелина

    Слайд 6

    Первые попытки систематизации элементов Джон Александр Рейна Ньюлендсв1864 г. опубликовал таблицу элементов, отражающую предложенный им закон октав. Ньюлендс показал, что в ряду элементов, размещённых в порядке возрастания атомных весов, свойства восьмого элемента сходны со свойствами первого. Такая зависимость действительно имеет место для лёгких элементов, однако Ньюлендс пытается придать ей всеобщий характер. В таблице Ньюлендса сходные элементы располагались в горизонтальных рядах; однако, в одном и том же ряду часто оказывались и элементы совершенно непохожие. Кроме того, в некоторых ячейках Ньюлендс вынужден был разместить по два элемента; наконец, таблица Ньюлендса не содержит свободных мест.

    Слайд 7

    Таблица Ньюлендса

    Слайд 8

    Первые попытки систематизации элементов В 1864 году Уильям Одлинг, пересмотрев предложенную им в 1857 г. систематику элементов, основанную на эквивалентных весах, предложил следующую таблицу, не сопровождаемую какими-либо пояснениями.

    Слайд 9

    Таблица Одлинга

    Слайд 10

    В 1870 г. Юлиус Лотар Мейеропубликовал свою первую таблицу, в которую включены 42 элемента (из 63), размещённые в шесть столбцов согласно их валентностям. Мейер намеренно ограничил число элементов в таблице, чтобы подчеркнуть закономерное (аналогичное триадам Дёберейнера) изменение атомной массы в рядах подобных элементов. Первые попытки систематизации элементов

    Слайд 11

    Таблица Майера

    Слайд 12

    В марте 1869 г. русский химик Дмитрий Иванович Менделеев представил Русскому химическому обществу периодический закон химических элементов, изложенный в нескольких основных положениях. В том же 1869 г. вышло и первое издание учебника "Основы химии", в котором была приведена периодическая таблица Менделеева.

    Слайд 13

    Первая таблица Д.И.Менделеева, 1869 г

    Слайд 14

    В конце 1870 г. Менделеев доложил РХО статью "Естественная система элементов и применение её к указанию свойств неоткрытых элементов", в котором предсказал свойства неоткрытых ещё элементов – аналогов бора, алюминия и кремния (соответственно экабор, экаалюминий и экасилиций).

    Слайд 15

    В 1871 г. Менделеев в итоговой статье "Периодическая законность химических элементов" дал формулировку Периодического закона: «Свойства элементов, а потому и свойства образуемых ими простых и сложных тел стоят в периодической зависимости от атомного веса». Тогда же Менделеев придал своей периодической таблице классический вид.

    Слайд 16

    Распространённее других являются 3 формы таблицы Менделеева: «короткая» (короткопериодная) «длинная» (длиннопериодная) «сверхдлинная». В «сверхдлинном» варианте каждый период занимает ровно одну строчку. В «длинном» варианте лантаноиды и актиноиды вынесены из общей таблицы, делая её более компактной. В «короткой» форме записи, в дополнение к этому, четвёртый и последующие периоды занимают по 2 строчки; символы элементов главных и побочных подгрупп выравниваются относительно разных краёв клеток.

    Слайд 17

    Слайд 18

    Слайд 19

    Вторая формулировка Периодического закона Свойства химических элементов и образованных ими веществ находятся в периодической зависимости от зарядов их атомных ядер.

    Слайд 20

    Третья формулировка Периодического закона Свойства химических элементов и образованных ими веществ находятся в периодической зависимости от периодичности в изменении конфигураций внешних электронных слове атомов химических элементов.

    Слайд 21

    Немецкий химик Леопольд Гмелин родился в Гёттингене в семье известного химика и врача Иоганна Фридриха Гмелина. Учился в Тюбингенском и Гёттингенском университетах; в 1812 получил степень доктора медицины. С 1813 по 1851 работал в Гейдельбергском университете; с 1817 - профессор медицины и химии.

    Слайд 22

    Джон Александр Рейна Ньюлендс родился в Лондоне 26 ноября 1837 г. Отец, шотландский священник Уильям Ньюлендс, не хотевший, чтобы сын пошёл по его стопам, подготовил его к поступлению в в химический колледж. Мать, Мэри Сара Рейна, итальянка, привила сыну любовь к музыке. Получив образование в колледже, он в 1857 г. Ньюлендс становится ассистентом химика в Королевском сельскохозяйственном обществе. Однако под влиянием матери Ньюлендс уезжает на её родину, в Италию, где набирало силу освободительное движение во главе с Джузеппе Гарибальди. Там в начале 1860 г. Ньюлендс познакомился со Станислао Канниццаро – одним из реформаторов атомно-молекулярного учения. Общение с Канниццаро, по-видимому, привлекло внимание Ньюлендса к проблеме атомных весов элементов.

    Слайд 23

    Английский химик Уильям Одлинг родился в Саутуорке, близ Лондона. В 1846-1850 гг. он получил медицинское образование в медицинской школе при госпитале Св. Варфоломея в Лондоне. В 1850 г. изучал химию в Париже у Шарля Жерара. С 1868 г. – профессор Королевского института, с 1872 г. – Оксфордского университета. Член Лондонского королевского общества с 1859 г., его почётный Секретарь (1856-1869), Вице-президент (1869-1872) и Президент (1873-1875).

    Слайд 24

    Юлиус Лотар Мейер родился 19 августа 1830 года в семье врача в маленьком городке Фареле в провинции Ольденбург. Обладая слабым здоровьем, среднюю школу он смог закончить только к двадцати одному году. После школы по примеру своего отца Мейер стал изучать медицину, и в 1854 году получил степень доктора в Вюрцбургском университете.

    Слайд 25

    Д.И. Менделеев родился 8 февраля 1834г. в г.Тобольске, в семье директора гимназии и попечителя училищ. Мать - владелица небольшого стекольного производства.

    Слайд 26

Посмотреть все слайды

краткое содержание других презентаций

«Внеклассное мероприятие по химии» - Придумайте четверостишия. Для чего применяют химические индикаторы. Поставьте в соответствие название вещества с формулой. Цели мероприятия. Закон сохранения масс. Основные законы химии. Выдающийся естествоиспытатель древности Плиний Старший. Петр Великий говорил: “Я предчувствую, что Россияне, когда–нибудь, а. Лабиринт пройден. Этот элемент называют королем живой природы. Соли каких катионов окрашивают пламя.

«Кристаллическая решётка вещества» - Закон постоянства состава веществ. Мотивация. Атомы. Макет кристаллической решетки. Дайте характеристику аморфным веществам. Подведение итогов. Лабораторный опыт. Твердые вещества. Кристалл. Вещества с атомной кристаллической решеткой. Агрегатное состояние веществ. Кристаллические решетки. Кристаллы серы. Шкала оценок. Познать сущее. Возгонка. Агрегатное состояние воды. Диктант. Ответьте на вопросы.

«Хлор» - Хлор - один из самых активных неметаллов. Образует соединения с другими галогенами. Молекула хлора. Хлор. Хлор – ядовитый газ желто-зеленого цвета с резким запахом. Применение хлора. Производство хлорорганических инсектицидов. Возбуждения. Химические свойства. Хлор в органике. Хлор растворяется вводе. Физические свойства. Минералы. Распространение в природе. Cu+Cl2=CuCl2. Получение. Строение атома.

«Нуклеиновые кислоты в клетке» - Задачи на комплементарность. Свойства генетического кода. Антикодоны. Состав и структура РНК. Полный оборот. Биологическая роль и-РНК. Строение и функции РНК. Эрвин Чаргафф. Фридрих Фишер. Содержание ДНК в клетке. Генетический код. Уотсон Джеймс Дьюи. Репликация ДНК. Дезоксирибонуклеиновая кислота. Молекулы ДНК. Структуры ДНК и РНК. Сходства. Приспособленность организма к среде обитания. Сахар. Нуклеиновые кислоты.

«Многообразие веществ» - Название углеводорода. Формулы веществ. Общая формула. Функциональная группа. Многообразие неорганических и органических веществ. Названия веществ. Название углевода. Название оксида. Установите соответствие. Сложные эфиры. Название вещества.

««Задачи» химия 11 класс» - Деление куба. Микрофотографии золотых нанотрубок. Образование одностенной трубки. Тепловой наномотор. Объемная структура алмаза. Структура графенового монослоя. Решение задач по нанохимии и нанотехнологии. Структура нанопроволоки. Применение наноматериалов. Два подхода к получению наночастиц. Обнаружение метастаза. Зависимость цвета золей золота (а) от размера частиц. Наночастица золота. Возможные структуры нанокластера.

Слайд 2

Он один из самых гениальных химиков XIX века; провёл многочисленные определения физических констант соединений (удельные объёмы, расширение и т. д.), изучал Донецкие месторождения каменного угля, разработал теорию растворов. Написал «Основы химии» (1868-1871) - труд, многочисленные издания которого оказали влияние на химиков-неоргаников. М. Джуа Дмитрий Иванович Менделеев

Слайд 3

Дмитрий Иванович Менделеев Д. И. Менделеев - автор фундаментальных исследований по химии, физике, метрологии, метеорологии, экономике, основополагающих трудов по воздухоплаванию, сельскому хозяйству, химической технологии, народному просвещению и других работ, тесно связанных с потребностями развития производительных сил России.

Слайд 4

Дмитрий Иванович Менделеев родился 8 февраля 1834 года в селе Верхние Аремзяны недалеко от Тобольска, в семье директора гимназии и попечителя училищ. Он был четырнадцатым ребенком в семье. Воспитывала его мать, поскольку отец будущего химика вскоре после его рождения умер. Дмитрий Иванович Менделеев

Слайд 5

Научная деятельность Д. И. Менделеев исследовал (в 1854-1856 годах) явления изоморфизма, раскрывающие отношения между кристаллической формой и химическим составом соединений, а также зависимость свойств элементов от величины их атомных объёмов. Открыл в 1860 году «температуру абсолютного кипения жидкостей», или критическую температуру. 16 декабря 1860 года он пишет из Гейдельберга попечителю Санкт-Петербургского учебного округа И. Д. Делянову: «…главный предмет моих занятий есть физическая химия». Д. И. Менделеев является автором первого русского учебника «Органическая химия» (1861 год).

Слайд 6

Периоди́ческая система хими́ческихэлеме́нтов - классификация химических элементов, устанавливающая зависимость различных свойств элементов от заряда атомного ядра. Система является графическим выражением периодического закона, установленного русским химиком Д. И. Менделеевым в 1869 году. Её первоначальный вариант был разработан Д. И. Менделеевым в 1869-1871 годах и устанавливал зависимость свойств элементов от их атомного веса (по-современному, от атомной массы). Всего предложено несколько сотен вариантов изображения периодической системы. В современном варианте системы предполагается сведение элементов в двумерную таблицу, в которой каждый столбец (группа) определяет основные физико-химические свойства, а строки представляют собой периоды, в определённой мере подобные друг другу.

Слайд 7

Периоди́ческаясисте́махими́ческихэлеме́нтов (табли́цаМенделе́ева) - классификация химических элементов, устанавливающая зависимость различных свойств элементов от заряда атомного ядра. Система является графическим выражением периодического закона, установленного русским химиком Д. И. Менделеевым в 1869 году.

Слайд 8

Слайд 9

Структура периодической системы

Наиболее распространёнными являются 3 формы таблицы Менделеева: «короткая» (короткопериодная), «длинная» (длиннопериодная) и «сверхдлинная». В «сверхдлинном» варианте каждый период занимает ровно одну строчку. В «длинном» варианте лантаноиды и актиноиды вынесены из общей таблицы, делая её более компактной. В «короткой» форме записи, в дополнение к этому, четвёртый и последующие периоды занимают по 2 строчки; символы элементов главных и побочных подгрупп выравниваются относительно разных краёв клеток.

Слайд 10

«КОРОТКАЯ» ТАБЛИЦА МЕНДЕЛЕЕВА

Слайд 11

ДЛИННАЯ ФОРМА ТАБЛИЦЫ МЕНДЕЛЕЕВА

Слайд 12

Короткая форма таблицы, содержащая восемь групп элементов[была официально отменена ИЮПАК в 1989 году. Несмотря на рекомендацию использовать длинную форму, короткая форма продолжает приводиться в большом числе российских справочников и пособий и после этого времени. Из современной иностранной литературы короткая форма исключена полностью, вместо неё используется длинная форма. Такую ситуацию некоторые исследователи связывают в том числе с кажущейся рациональной компактностью короткой формы таблицы, а также с инерцией, стереотипностью мышления и невосприятием современной (международной) информации.

Слайд 13

Значение периодической системы Периодическая система Д. И. Менделеева стала важнейшей вехой в развитии атомно-молекулярного учения. Благодаря ей сложилось современное понятие о химическом элементе, были уточнены представления о простых веществах и соединениях. Mg (магний): 12 – номер хим. Элемента в ПСХЭ Менделеева (соответствует числу протонов и электронов); 2 - число электронов на первом энергетическом уровне; 8 – на 2 энерг.уровне; 2 – число электронов на 3 энерг.уровне; 24, 312 – атомная масса хим.элемента.

Слайд 14

Разработанная в XIX в. в рамках науки химии, периодическая таблица явилась готовой систематизацией типов атомов для новых разделов физики, получивших развитие в начале XX в. - физики атома и физики ядра. В ходе исследований атома методами физики было установлено, что порядковый номер элемента в таблице Менделеева (атомный номер) является мерой электрического заряда атомного ядра этого элемента, номер горизонтального ряда (периода) в таблице определяет число электронных оболочек атома, а номер вертикального ряда - квантовую структуру верхней оболочки, чему элементы этого ряда и обязаны сходством химических свойств.

Слайд 15

Появление периодической системы открыло новую, подлинно научную эру в истории химии и ряде смежных наук - взамен разрозненных сведений об элементах и соединениях появилась стройная система, на основе которой стало возможным обобщать, делать выводы, предвидеть.

Слайд 16

Определения, которые нам надо знать для изучения темы:

Слайд 17

Атом – электронейтральная система взаимодействующих элементарных частиц, состоящего из ядра (образованного протонами и нейтронами) и электронов.

Слайд 18

Модель строения атома

Слайд 19

Изотопы – это разновидности атомов одного и того же хим.элемента, имеющие одинаковое число протонов но разное число нейтронов. + 1H - протий (Н)

Слайд 20

2H - дейтерий (D)

Слайд 21

3H - тритий (радиоактивен) (T).

Слайд 22

Химический элемент – это вид атомов с одинаковым положительным зарядом ядра.

Слайд 23

Электронное облако – пространство вокруг атомного ядра, в котором наиболее вероятно нахождение электрона.

Слайд 24

Формы электронных облаков.

Слайд 25

Орбитали, или подуровни, как их еще называют, могут иметь разную форму, и их количество соответствует номеру уровня, но не превышает четырех. Первый энергетический уровень имеет один подуровень (s), второй – два (s,p), третий – три (s,p,d) и т.д. Электроны разных подуровней одного и того же уровня имеют разную форму электронного облака: сферическую (s), гантелеобразную (p) и более сложную конфигурацию (d) и (f). Сферическую атомную орбиталь ученые договорились называть s-орбиталью. Она самая устойчивая и располагается довольно близко к ядру.

Слайд 26

Форма S-подуровня.

Слайд 27

Форма P-подуровня.

Слайд 28

Формаd-подуровня.

Слайд 29

Электронная оболочка – совокупность всех электронов в атоме.

Слайд 30

Электроны, обладающие близкими значениями энергиями, образуют единый электронный слой. + Z K L M N O P Q 1 2 3 4 5 6 7

Слайд 31

Периодическая система Д. И. Менделеева в свете учения о строении атома.

Слайд 32

В пределах одного и того же периода металлические свойства ослабевают, а неметаллические усиливаются, так как: а) увеличиваются заряды атомных ядер элементов; б) увеличивается число электронов на внешнем энергетическом уровне атомов; в) число энергетических уровней в атомах элементов не изменяется; г) радиус атомов уменьшается.

Слайд 33

Заряд атома водорода Заряд атома лития (оба элемента располагаются в первом периоде)

Слайд 34

В пределах одной и той же группы (в главной подгруппе) металлические свойства усиливаются, а неметаллические ослабевают, так как: а) увеличиваются заряды атомных ядер элементов; б) число электронов на внешнем энергетическом уровне не изменяется; в) увеличивается число энергетических уровней в атомах; г) увеличивается радиус атомов.

Слайд 35

Заряд атома углерода

Слайд 36

Заряд атома азота

Слайд 37

Примеры Графических формул некоторых металлов и неметаллов

Слайд 38

Элементы неметаллов Немета́ллы - химические элементы с типично неметаллическими свойствами, которые занимают правый верхний угол Периодической системы. Расположение их в главных подгруппах соответствующих периодов следующее: Кроме того, к неметаллам относят также водород и гелий. Характерной особенностью неметаллов является большее (по сравнению с металлами) число электронов на внешнем энергетическом уровне их атомов. Это определяет их большую способность к присоединению дополнительных электронов, и проявлению более высокой окислительной активности, чем у металлов. Неметаллы имеют высокие значения сродства к электрону, большую электроотрицательность и высокий окислительно-восстановительный потенциал.

Слайд 39

Слайд 40

N 5 2 2 Краткая электронная конфигурация 2s2p 2 3

Слайд 41

Слайд 42

F 2 7 Краткая электронная конфигурация 2s2p 2 5

Слайд 43

Слайд 44

As 2 5 18 8 Краткая электронная конфигурация 4s4p 2 3

Слайд 45

Слайд 46

I 2 18 18 8 7 Краткая электронная конфигурация 5s5p 2 5

Слайд 47

Слайд 1

Таблица Менделеева внутри нас.

Выполнил:

Слайд 2

Известно, что Д.И.Менделеев - создатель периодической системы элементов - свое главное открытие сделал во сне. Но даже ему не могло присниться, какое огромное количество элементов содержится в человеческом теле. Наш организм – настоящая химическая кладовая и химическая лаборатория. Более 50 элементов является его постоянным составляющим и участниками самых разных процессов. «Элементами жизни» называют основные составляющие не только человеческого организма, но вообще всего живого: кислород, углерод, водород и азот.

Слайд 3

Силы четыре, Соединяясь, Жизнь образуют, Мир создают.

Так писал, немецкий поэт Фридрих Шиллер, и это сущая правда. На 70% мы состоим из кислорода, 18 % массы человека составляет углерод, а 10% - водород.

Слайд 4

Присутствие в организме азота не столь значительно, но он тоже играет Огромную роль в нашей жизни. Хотя название «азот» переводится с греческого как «неживой», без него существование организмов невозможно. Этот элемент содержится во всех белках и нуклеотидах – важнейших биологических веществах.

В теле человека всё находится в строгом равновесии. Даже незначительное изменение может иметь опасные последствия. Особо чувствителен организм к увеличению или уменьшению содержания водорода, точнее иона H, от которого зависит кислотность внутренней среды.

Слайд 5

Кислород по праву считается олицетворением самой жизни. О нем в первую очередь вспоминают, когда говорят о дыхании. Это не только ритмичные движения грудной клетки, при которых воздух попадает в легкие. Главное происходит внутри каждой клетки. Там кислород участвует в химических реакциях. Конечный продукт – углекислый газ. Углерод, входящий в него, также один из тех элементов, без которых невозможна жизнь. Углеводы, белки, жиры, витамины – во всех них углерод играет в первую скрипку.

Слайд 6

Однако и остальные элементы нельзя отнести к второстепенным. В человеческом теле нет ничего такого, что было бы не нужно. Многие элементы представлены в организме – в микроскопических количествах – микроэлементы. Но роль их отнюдь не мала. Без них разладились бы все стройные химические связи организма. Медь Например медь содержится в ферментах, отвечающих за кроветворение, иммунитет, обмен углеводов. Участвует медь в обмене меланина – пигмента, от которого зависят цвет глаз, волос и кожи. Медь присутствует во всех органах, много их в печени, селезенке, головном мозге. Пополняются запасы этого элемента при употреблении в пищу рыбы, яиц, шпината, винограда, печени.

Слайд 7

Огромное влияние на образование крови оказывает и другой микроэлемент – железо. В организме человека ежедневно должно поступать хотя бы одна сотая грамма этого металла. Основная его функция состоит в переносе кислорода их легких к клеткам. Железо входит в состав гемоглобина. Чтобы запасы железа не иссякли, человек должен употреблять в пищу мясо, рыбу, печень, яйца, орехи.

Слайд 8

Еще один металл, необходимый нам для жизни, - цинк. Без него в организме не будет работать около сотни различных ферментов. Цинк нужен для нормального функционирования эндокринных желез, особенно поджелудочной, где он содержится в большом количестве. Важную роль играет цинк в процессах деления клеток и роста всего организма.

Слайд 9

Среди «металлов жизни» есть такие, которые определяют ход абсолютно всех процессов, протекающих в человеческом организме. Это кальций, калий и натрий. Кальций можно обнаружить во всех тканях и жидкостях тела. Около 99% его содержится в костях в виде фосфорных солей. Кальций придает костям прочность. Продукты, богатые кальцием, - сыры, молоко, творог. Калий и натрий присутствует в организме в растворенном, ионизированном виде. Калий – основной внутриклеточный ион, а натрий – внеклеточный. Во многом от концентрации в крови ионов калия зависит нормальная работа сердца.

Кальций, калий и натрий.

Слайд 10

Содержание в организме солей строго взаимосвязано. Их обмен Нормализует минералокортикоиды – гормоны из коркового вещества надпочечников. Изменение концентрации натрия может повлечь нарушение водяного обмена. Основной источник натрия для человека – хлорид натрия, или, проще, поваренная соль. Рассыпать соль считалось плохой приметой. Некогда на Руси говорили: «Соли не жалей, так есть веселей».Для нормальной работы организму достаточно всего 5г поваренной соли в сутки. Поваренная соль – это еще и хлор – один из важнейших неметаллов Нашей «лаборатории». Хлор участвует в образовании соляной кислоты – основного компонента желудочного сока.

Слайд 11

Фосфор входит в состав АТФ – молекулы, в которой спрятаны небывалые энергетические ресурсы. В костях и зубах содержится 80% фосфора. Считается, что он необходим также для умственной деятельности. Присутствие фосфора и его солей активизирует многие обменные процессы. Из пищевых продуктов особенного богаты фосфором морская рыба, молоко, мясо, яйца, орехи, злаки.

Слайд 12

А что же другие элементы?. Сосед серебра по таблице Менделеева – кадмий встречается в почках. Там же можно найти свинец и марганец. Марганец входит в состав ряда ферментов, участвующих в обмене витаминов С и В1, а также в жировом обмене.

Слайд 13

В теле человека присутствуют и хлор, и йод, и фтор, и бром, И другие элементы таблицы Менделеева. Невозможно рассказать про все химические элементы, работающие на благо человека, - их масса, и к тому же о многих еще далеко неизвестно. Непонятно, например зачем в организме присутствует уран. Неясна до конца роль драгоценных металлов – золота и серебра, которые содержатся внутри каждого из нас.

Слайд 14

И в очередной раз остается лишь восхититься мудрости, с которой в природе устроено все живое. Невероятные комбинации химических элементов образуют чудо, которые называется человеком.

Слайд 1

Описание слайда:

Слайд 2

Описание слайда:

Слайд 3

Описание слайда:

Слайд 4

Описание слайда:

Предпосылки создания таблицы Предпосылки создания таблицы Величайшим вкладом, изменившим весь ход науки, была идея гениального русского ученого Дмитрия Ивановича Менделеева, поставившего перед собой цель разобраться во всем многообразии химических элементов и свести их в единую систему. Каким образом поставленная Менделеевым задача была решена? "Посвятив свои силы изучению вещества, я вижу в нем два таких признака или свойства: массу, занимающую пространство и проявляющуюся в весе, и индивидуальность, выраженную в химических превращениях". Отсюда, продолжал Д.И. Менделеев, "... невольно зарождается мысль о том, что между массою и химическими элементами должна быть связь, а так как масса вещества, хотя и не абсолютная, а лишь относительная, выражается окончательно в виде атомов, то надо искать соответствия между индивидуальными свойствами элементов и их атомными весами". Так, в бесконечном многообразии свойств, присущих различным веществам, Менделеев усмотрел то общее свойство, которое оказавшись присущим всех химическим элементам, привело его к открытию величайшего закона природы, ставшего руководящим законом не только для химиков и физиков, но и любых специалистов, занимающихся изучением вещества. Таким образом, присущим всем веществам свойством, оказался вес составляющих их атомов - атомный вес.

Слайд 5

Описание слайда:

Слайд 6

Описание слайда:

Слайд 7

Описание слайда:

В марте 1869г. Менделеев сообщил Русскому химическому обществу об открытом им законе в статье "Соотношение свойств с атомным весом элементов" и тогда же сформулировал основные положения открытого законе. Пользуясь законом, Менделеев предсказал и подробно описал свойства некоторых еще не известных элементов. Дальнейшие открытия химических элементов подтвердили правильность предсказаний Менделеева и поставили имя Менделеева на первое место в истории не только химии, но и всего естествознания. Всего Менделеевым было предсказано существование одиннадцати химических элементов, в том числе и таких, как полоний, радий, протактиний. В марте 1869г. Менделеев сообщил Русскому химическому обществу об открытом им законе в статье "Соотношение свойств с атомным весом элементов" и тогда же сформулировал основные положения открытого законе. Пользуясь законом, Менделеев предсказал и подробно описал свойства некоторых еще не известных элементов. Дальнейшие открытия химических элементов подтвердили правильность предсказаний Менделеева и поставили имя Менделеева на первое место в истории не только химии, но и всего естествознания. Всего Менделеевым было предсказано существование одиннадцати химических элементов, в том числе и таких, как полоний, радий, протактиний.