Дробь представляет собой число, которое состоит из одной или нескольких долей единицы. В математике существует три вида дробей: обыкновенные, смешанные и десятичные.


  • Обыкновенные дроби

Обыкновенная дробь записывается как соотношение, в котором в числителе отражается, сколько взято частей от числа, а знаменатель показывает, на сколько частей разделена единица. Если числитель меньше знаменателя, то перед нами правильная дробь.Например: ½, 3/5, 8/9.


Если числитель равен знаменателю или больше его, то мы имеем дело с неправильной дробью. Например: 5/5, 9/4, 5/2 При делении числителя может получиться конечное число. Например, 40/8 = 5. Следовательно, любое целое число может быть записано в виде обыкновенной неправильной дроби или ряда таких дробей. Рассмотрим записи одного и того же числа в виде ряда различных .

  • Смешанные дроби

В общем виде смешанная дробь может быть представлена формулой:


Таким образом, смешанная дробь записывается как целое число и обыкновенная правильная дробь, а под такой записью понимают сумму целого и его дробной части.

  • Десятичные дроби

Десятичная дробь – это особая разновидность дроби, у которой знаменатель может быть представлен как степень числа 10. Существуют бесконечные и конечные десятичные дроби. При записи этой разновидности дроби сначала указывается целая часть, затем через разделитель (точку или запятую) фиксируется дробная часть.


Запись дробной части всегда определяется ее размерностью. Десятичная запись выглядит следующим образом:

Правила перевода между различными видами дробей

  • Перевод смешанной дроби в обыкновенную

Смешанную дробь можно перевести только в неправильную. Для перевода необходимо целую часть привести и тому же знаменателю, что и дробную. В общем виде это будет выглядеть следующим образом:
Рассмотрим использование этого правила на конкретных примерах:


  • Перевод обыкновенной дроби в смешанную

Неправильную обыкновенную дробь можно превратить в смешанную путем простого деления, в результате которого находится целая часть и остаток (дробная часть).


Для примера переведем дробь 439/31 в смешанную:
​​

  • Перевод обыкновенной дроби

В некоторых случаях перевести дробь в десятичную достаточно просто. В этом случае применяется основное свойство дроби, числитель и знаменатель умножаются на одно и то же числу, для того, чтобы привести делитель к степени числа 10.


Например:



В некоторых случаях может понадобиться найти частное путем деления уголком или с помощью калькулятора. А некоторые дроби невозможно привести к конечной десятичной дроби. Например, дробь 1/3 при делении никогда не даст конечный результат.

В пятом веке до нашей эры древнегреческий философ Зенон Элейский сформулировал свои знаменитые апории, самой известной из которых является апория "Ахиллес и черепаха". Вот как она звучит:

Допустим, Ахиллес бежит в десять раз быстрее, чем черепаха, и находится позади неё на расстоянии в тысячу шагов. За то время, за которое Ахиллес пробежит это расстояние, черепаха в ту же сторону проползёт сто шагов. Когда Ахиллес пробежит сто шагов, черепаха проползёт ещё десять шагов, и так далее. Процесс будет продолжаться до бесконечности, Ахиллес так никогда и не догонит черепаху.

Это рассуждение стало логическим шоком для всех последующих поколений. Аристотель, Диоген, Кант, Гегель, Гильберт... Все они так или иначе рассматривали апории Зенона. Шок оказался настолько сильным, что "... дискуссии продолжаются и в настоящее время, прийти к общему мнению о сущности парадоксов научному сообществу пока не удалось... к исследованию вопроса привлекались математический анализ, теория множеств, новые физические и философские подходы; ни один из них не стал общепризнанным решением вопроса... " [Википедия, " Апории Зенона "]. Все понимают, что их дурят, но никто не понимает, в чем заключается обман.

С точки зрения математики, Зенон в своей апории наглядно продемонстрировал переход от величины к . Этот переход подразумевает применение вместо постоянных. Насколько я понимаю, математический аппарат применения переменных единиц измерения либо ещё не разработан, либо его не применяли к апории Зенона. Применение же нашей обычной логики приводит нас в ловушку. Мы, по инерции мышления, применяем постоянные единицы измерения времени к обратной величине. С физической точки зрения это выглядит, как замедление времени до его полной остановки в момент, когда Ахиллес поравняется с черепахой. Если время останавливается, Ахиллес уже не может перегнать черепаху.

Если перевернуть привычную нам логику, всё становится на свои места. Ахиллес бежит с постоянной скоростью. Каждый последующий отрезок его пути в десять раз короче предыдущего. Соответственно, и время, затрачиваемое на его преодоление, в десять раз меньше предыдущего. Если применять понятие "бесконечность" в этой ситуации, то правильно будет говорить "Ахиллес бесконечно быстро догонит черепаху".

Как избежать этой логической ловушки? Оставаться в постоянных единицах измерения времени и не переходить к обратным величинам. На языке Зенона это выглядит так:

За то время, за которое Ахиллес пробежит тысячу шагов, черепаха в ту же сторону проползёт сто шагов. За следующий интервал времени, равный первому, Ахиллес пробежит ещё тысячу шагов, а черепаха проползет сто шагов. Теперь Ахиллес на восемьсот шагов опережает черепаху.

Этот подход адекватно описывает реальность без всяких логических парадоксов. Но это не полное решение проблемы. На Зеноновскую апорию "Ахиллес и черепаха" очень похоже утверждение Эйнштейна о непреодолимости скорости света. Эту проблему нам ещё предстоит изучить, переосмыслить и решить. И решение нужно искать не в бесконечно больших числах, а в единицах измерения.

Другая интересная апория Зенона повествует о летящей стреле:

Летящая стрела неподвижна, так как в каждый момент времени она покоится, а поскольку она покоится в каждый момент времени, то она покоится всегда.

В этой апории логический парадокс преодолевается очень просто - достаточно уточнить, что в каждый момент времени летящая стрела покоится в разных точках пространства, что, собственно, и является движением. Здесь нужно отметить другой момент. По одной фотографии автомобиля на дороге невозможно определить ни факт его движения, ни расстояние до него. Для определения факта движения автомобиля нужны две фотографии, сделанные из одной точки в разные моменты времени, но по ним нельзя определить расстояние. Для определения расстояния до автомобиля нужны две фотографии, сделанные из разных точек пространства в один момент времени, но по ним нельзя определить факт движения (естественно, ещё нужны дополнительные данные для расчетов, тригонометрия вам в помощь). На что я хочу обратить особое внимание, так это на то, что две точки во времени и две точки в пространстве - это разные вещи, которые не стоит путать, ведь они предоставляют разные возможности для исследования.

среда, 4 июля 2018 г.

Очень хорошо различия между множеством и мультимножеством описаны в Википедии . Смотрим.

Как видите, "во множестве не может быть двух идентичных элементов", но если идентичные элементы во множестве есть, такое множество называется "мультимножество". Подобную логику абсурда разумным существам не понять никогда. Это уровень говорящих попугаев и дрессированных обезьян, у которых разум отсутствует от слова "совсем". Математики выступают в роли обычных дрессировщиков, проповедуя нам свои абсурдные идеи.

Когда-то инженеры, построившие мост, во время испытаний моста находились в лодке под мостом. Если мост обрушивался, бездарный инженер погибал под обломками своего творения. Если мост выдерживал нагрузку, талантливый инженер строил другие мосты.

Как бы математики не прятались за фразой "чур, я в домике", точнее "математика изучает абстрактные понятия", есть одна пуповина, которая неразрывно связывает их с реальностью. Этой пуповиной являются деньги. Применим математическую теорию множеств к самим математикам.

Мы очень хорошо учили математику и сейчас сидим в кассе, выдаем зарплату. Вот приходит к нам математик за своими деньгами. Отсчитываем ему всю сумму и раскладываем у себя на столе на разные стопки, в которые складываем купюры одного достоинства. Затем берем с каждой стопки по одной купюре и вручаем математику его "математическое множество зарплаты". Поясняем математику, что остальные купюры он получит только тогда, когда докажет, что множество без одинаковых элементов не равно множеству с одинаковыми элементами. Вот здесь начнется самое интересное.

В первую очередь, сработает логика депутатов: "к другим это применять можно, ко мне - низьзя!". Дальше начнутся уверения нас в том, что на купюрах одинакового достоинства имеются разные номера купюр, а значит их нельзя считать одинаковыми элементами. Хорошо, отсчитываем зарплату монетами - на монетах нет номеров. Здесь математик начнет судорожно вспоминать физику: на разных монетах имеется разное количество грязи, кристаллическая структура и расположение атомов у каждой монеты уникально...

А теперь у меня самый интересный вопрос: где проходит та грань, за которой элементы мультимножества превращаются в элементы множества и наоборот? Такой грани не существует - всё решают шаманы, наука здесь и близко не валялась.

Вот смотрите. Мы отбираем футбольные стадионы с одинаковой площадью поля. Площадь полей одинакова - значит у нас получилось мультимножество. Но если рассматривать названия этих же стадионов - у нас получается множество, ведь названия разные. Как видите, один и тот же набор элементов одновременно является и множеством, и мультимножеством. Как правильно? А вот здесь математик-шаман-шуллер достает из рукава козырный туз и начинает нам рассказывать либо о множестве, либо о мультимножестве. В любом случае он убедит нас в своей правоте.

Чтобы понять, как современные шаманы оперируют теорией множеств, привязывая её к реальности, достаточно ответить на один вопрос: чем элементы одного множества отличаются от элементов другого множества? Я вам покажу, без всяких "мыслимое как не единое целое" или "не мыслимое как единое целое".

воскресенье, 18 марта 2018 г.

Сумма цифр числа - это пляска шаманов с бубном, которая к математике никакого отношения не имеет. Да, на уроках математики нас учат находить сумму цифр числа и пользоваться нею, но на то они и шаманы, чтобы обучать потомков своим навыкам и премудростям, иначе шаманы просто вымрут.

Вам нужны доказательства? Откройте Википедию и попробуйте найти страницу "Сумма цифр числа". Её не существует. Нет в математике формулы, по которой можно найти сумму цифр любого числа. Ведь цифры - это графические символы, при помощи которых мы записываем числа и на языке математики задача звучит так: "Найти сумму графических символов, изображающих любое число". Математики эту задачу решить не могут, а вот шаманы - элементарно.

Давайте разберемся, что и как мы делаем для того, чтобы найти сумму цифр заданного числа. И так, пусть у нас есть число 12345. Что нужно сделать для того, чтобы найти сумму цифр этого числа? Рассмотрим все шаги по порядку.

1. Записываем число на бумажке. Что же мы сделали? Мы преобразовали число в графический символ числа. Это не математическое действие.

2. Разрезаем одну полученную картинку на несколько картинок, содержащих отдельные цифры. Разрезание картинки - это не математическое действие.

3. Преобразовываем отдельные графические символы в числа. Это не математическое действие.

4. Складываем полученные числа. Вот это уже математика.

Сумма цифр числа 12345 равна 15. Вот такие вот "курсы кройки и шитья" от шаманов применяют математики. Но это ещё не всё.

С точки зрения математики не имеет значения, в какой системе счисления мы записываем число. Так вот, в разных системах счисления сумма цифр одного и того же числа будет разной. В математике система счисления указывается в виде нижнего индекса справа от числа. С большим числом 12345 я не хочу голову морочить, рассмотрим число 26 из статьи про . Запишем это число в двоичной, восьмеричной, десятичной и шестнадцатеричной системах счисления. Мы не будем рассматривать каждый шаг под микроскопом, это мы уже сделали. Посмотрим на результат.

Как видите, в разных системах счисления сумма цифр одного и того же числа получается разной. Подобный результат к математике никакого отношения не имеет. Это всё равно, что при определении площади прямоугольника в метрах и сантиметрах вы получали бы совершенно разные результаты.

Ноль во всех системах счисления выглядит одинаково и суммы цифр не имеет. Это ещё один аргумент в пользу того, что . Вопрос к математикам: как в математике обозначается то, что не является числом? Что, для математиков ничего, кроме чисел, не существует? Для шаманов я могу такое допустить, но для ученых - нет. Реальность состоит не только из чисел.

Полученный результат следует рассматривать как доказательство того, что системы счисления являются единицами измерения чисел. Ведь мы не можем сравнивать числа с разными единицами измерения. Если одни и те же действия с разными единицами измерения одной и той же величины приводят к разным результатам после их сравнения, значит это не имеет ничего общего с математикой.

Что же такое настоящая математика? Это когда результат математического действия не зависит от величины числа, применяемой единицы измерения и от того, кто это действие выполняет.

Табличка на двери Открывает дверь и говорит:

Ой! А это разве не женский туалет?
- Девушка! Это лаборатория по изучению индефильной святости душ при вознесении на небеса! Нимб сверху и стрелочка вверх. Какой еще туалет?

Женский... Нимб сверху и стрелочка вниз - это мужской.

Если у вас перед глазами несколько раз в день мелькает вот такое вот произведение дизайнерского искусства,

Тогда не удивительно, что в своем автомобиле вы вдруг обнаруживаете странный значок:

Лично я делаю над собой усилие, чтобы в какающем человеке (одна картинка), увидеть минус четыре градуса (композиция из нескольких картинок: знак минус, цифра четыре, обозначение градусов). И я не считаю эту девушку дурой, не знающей физику. Просто у неё дугой стереотип восприятия графических образов. И математики нас этому постоянно учат. Вот пример.

1А - это не "минус четыре градуса" или "один а". Это "какающий человек" или число "двадцать шесть" в шестнадцатеричной системе счисления. Те люди, которые постоянно работают в этой системе счисления, автоматически воспринимают цифру и букву как один графический символ.

Каждый человек при решении задач с математики нередко сталкивался с задачами на дроби. Их очень много, поэтому мы рассмотрим разные варианты решения основных таких задач.

Что такое дроби

Верхнее число любой дроби называется числителем, а нижнее число - знаменателем. Обыкновенная дробь - это частное двух чисел, одно из этих чисел - в числителе дроби, второе - в знаменателе дроби. Виды этих обыкновенных дробей будут определяться сравнением знаменателя и числителя дроби.

Ежели знаменатель дроби (натуральное число) больше числителя дроби (натуральное число), то дробь называется правильной. Приведем примеры: 7/19; 9/13; 31/152; 5/17.

Если знаменатель дроби (натуральное число) меньше или равен числителю дроби (натуральное число), то дробь называется неправильной. Приведем примеры: 7/5; 19/3; 15/9; 231/63.

Как перевести неправильную дробь

Чтобы смешанную дробь перевести в неправильную, необходимо целую часть дроби умножить на знаменатель в дробной части и добавить числитель к этому произведению. Потом сумму взять как числитель, написав тот же, что и прежде знаменатель. Приведем примеры:

  • 4(3/11) = (4x11+3)/11 = (44+3)/11 = 47/11.
  • 11(5/9) = (11x9+5)/9 = (99+5)/9 = 104/9.

Для перевода неправильной дроби в правильную, необходимо числитель этой неправильной дроби разделить на ее знаменатель. Полученное, при этом, целое число взять целой частью дроби, ну а остаток (конечно, если он есть) взять как числитель дробной части правильной дроби, написав тот же, что и прежде знаменатель. Приведем примеры:

  • 150/13 = (143/13)+(7/13) = 11(7/13).
  • 156/12 = (13x12)/12 = 13.

Для перевода неправильной дроби в десятичную необходимо выяснить, существует ли такой множитель, что позволит привести знаменатель дробной части неправильной дроби к числу, которое равно десятке (или десятке, которая возведена в любую степень (10, 100, 1000 и дальше). Если такой множитель есть, то необходимо умножить числитель и знаменатель неправильной дроби на этот множитель, чтобы проверить его. Теперь умноженный числитель необходимо приписать через запятую к целой части неправильной дроби. Приведем примеры:

  • Множитель «5» - 8/20 = (8x5)/(20x5) = 40/100 = 0,4.
  • Множитель «4» - 14/25 = (14x4)/(25x4) = 56/100 = 0,56.
  • Множитель «25» - 3/40 = (3x25)/(40x25) = 75/1000 = 0,075.

Если такого множителя не существует, это означает, что эта неправильная дробь в десятичной форме не имеет четкого эквивалента. То есть, не каждую неправильную дробь можно перевести в десятичную. В этом случае, Вам необходимо найти приблизительное значение дроби с необходимой для Вас степенью точности. Посчитать такую дробь можно на калькуляторе, в уме или в столбик. Приведем примеры: 41/7 = 5(6/7) = 5,9 (с округлением до десятых), = 5,86 (с округлением до сотых), = 5,857 (с округлением до тысячных); 3/7, 7/6, 1/3 и другие. Также четко не переводятся и считаются на калькуляторе, в уме или в столбик.

Теперь Вы знаете, как перевести неправильную дробь в правильную или десятичную дробь!

В этом материале мы разберем такое понятие, как смешанные числа. Начнем, как всегда, с определения и небольших примеров, потом поясним связь смешанных чисел и неправильных дробей. После этого мы изучим, как правильно выделять целую часть из дроби и получать в результате целое число.

Понятие смешанного числа

Если мы возьмем сумму n + a b , где значением n может быть любое натуральное число, а a b представляет из себя правильную обыкновенную дробь, то мы можем записать то же самое, не используя плюс: n a b . Возьмем конкретные числа для ясности: так, 28 + 5 7 – это то же самое, что и 28 5 7 . Запись дроби рядом с целым числом принято называть смешанным числом.

Определение 1

Смешанное число представляет собой такое число, которое равно сумме натурального числа n с правильной обыкновенной дробью a b . В таком случае n является целой частью числа, а a b – его дробной частью.

Из определения следует, что любое смешанное число равно тому, что получится в результате сложения его целой и дробной части. Таким образом, будет выполняться равенство n a b = n + a b .

Его также можно записать в виде n + a b = n a b .

Какие можно привести примеры смешанных чисел? Так, к ним относится 5 1 8 , при этом пятерка – это его целая часть, а одна восьмая – дробная. Еще примеры: 1 1 2 , 234 34 53 , 34000 6 25 .

Выше мы писали, что в дробной части смешанного числа должна стоять только правильная дробь. Иногда можно встретить записи вида 5 22 3 , 75 7 2 . Они не являются смешанными числами, т.к. их дробная часть неправильная. Их нужно понимать как сумму целой и дробной части. Такие числа можно привести к стандартному виду записи смешанных чисел, выделив целую часть из неправильной дроби и добавив ее к 5 и 75 в этих примерах соответственно.

Числа вида 0 3 14 также не относятся к смешанным. Здесь не выполняется первая часть условия: целая часть должна быть представлена только натуральным числом, а нуль им не является.

Как соотносятся между собой неправильные дроби и смешанные числа

Эту связь проще всего проследить на конкретном примере.

Пример 1

Возьмем целый торт и еще три четверти такого же. Согласно правилам сложения, у нас на столе находится 1 + 3 4 торта. Эту сумму можно представить в виде смешанного числа как 1 3 4 торта. Если мы возьмем целый торт и тоже разрежем его на четыре равные части, то у нас на столе будет 7 4 торта. Очевидно, что от разрезания количество не увеличилось, и 1 3 4 = 7 4 .

Наш пример доказывает, что в виде смешанного числа можно представить любую неправильную дробь.

Вернемся к нашим 7 4 торта, оставшимся на столе. Сложим из его кусочков один торт обратно (1 + 3 4) . У нас опять будет 1 3 4 .

Ответ: 7 4 = 1 3 4 .

Мы поняли, как приводить неправильную дробь к виду смешанного числа. Если в числителе неправильной дроби стоит такое число, которое можно разделить на знаменатель без остатка, то можно сделать это, и тогда наша неправильная дробь станет натуральным числом.

Пример 2

Например,

8 4 = 2 , так как 8: 4 = 2 .

Как перевести смешанное число в неправильную дробь

Чтобы успешно решать задачи, полезно уметь производить и обратное действие, то есть делать из смешанных чисел неправильные дроби. В этом пункте мы разберем, как правильно это сделать.

Для этого нужно воспроизвести следующую последовательность действий:

1. Для начала представляем имеющееся смешанное число n a b как сумму целой и дробной части. Получается n + a b

3.После этого выполняем уже знакомое действие – складываем две обыкновенные дроби n 1 и a b . Получившаяся в результате неправильная дробь и будет равной смешанному числу, данному в условии.

Разберем это действие на конкретном примере.

Пример 3

Представьте 5 3 7 в виде неправильной дроби.

Решение

Выполняем последовательно шаги указанного выше алгоритма. Наше число 5 3 7 – это сумма целой и дробной части, то есть 5 + 3 7 . Теперь пятерку запишем в виде 5 1 . У нас получилась сумма 5 1 + 3 7 .

Последний шаг – сложение дробей, имеющих разные знаменатели:

5 1 + 3 7 = 35 7 + 3 7 = 38 7

Все решение к краткой форме можно записать как 5 3 7 = 5 + 3 7 = 5 1 + 3 7 = 35 7 + 3 7 = 38 7 .

Ответ: 5 3 7 = 38 7 .

Таким образом, с помощью указанной выше цепочки действий мы можем перевести любое смешанное число n a b в неправильную дробь. У нас получилась формула n a b = n · b + a b , которую мы и будем брать для решения дальнейших задач.

Пример 4

Представьте 15 2 5 в виде неправильной дроби.

Решение

Возьмем указанную формулу и подставим в нее нужные значения. У нас n = 15 , a = 2 , b = 5 , следовательно, 15 2 5 = 15 · 5 + 2 5 = 77 5 .

Ответ: 15 2 5 = 77 5 .

Обычно мы не указываем неправильную дробь в качестве итогового ответа. Принято доводить вычисления до конца и заменять ее либо натуральным числом (разделив числитель на знаменатель), либо смешанным числом. Как правило, первый способ используется, когда разделить числитель на знаменатель можно без остатка, а второй – если такое действие невозможно.

Когда мы выделяем из неправильной дроби целую часть, мы просто заменяем ее равным смешанным числом.

Разберем, как именно это делается.

Определение 2

Приведем доказательство этого утверждения.

Нам требуется пояснить, почему q r b = a b . Для этого смешанное число q r b надо представить в виде неправильной дроби, выполнив все шаги алгоритма из предыдущего пункта. Поскольку – неполное частное, а r – остаток от деления a на b , то должно выполняться равенство a = b · q + r .

Таким образом, q · b + r b = a b поэтому q r b = a b . Это и есть доказательство нашего утверждения. Подытожим:

Определение 3

Выделение целой части из неправильной дроби a b осуществляется таким образом:

1) производим деление a на b с остатком и записываем неполное частное q и остаток r отдельно.

2) Записываем результаты в виде q r b . Это и есть наше смешанное число, равное исходной неправильной дроби.

Пример 5

Представьте 107 4 в виде смешанного числа.

Решение

Делим 104 на 7 столбиком:

Деление числителя a = 118 на знаменатель b = 7 дает нам в итоге неполное частное q = 16 и остаток r = 6 .

В итоге мы получаем, что неправильная дробь 118 7 равна смешанному числу q r b = 16 6 7 .

Ответ: 118 7 = 16 6 7 .

Нам осталось посмотреть, как заменить неправильную дробь натуральным числом (при условии, что ее числитель делится на знаменатель без остатка).

Для этого вспомним, какая связь существует между обыкновенными дробями и делением. Из этого можно вывести равенства: a b = a: b = c . Получается, что неправильную дробь a b можно заменить натуральным числом c .

Пример 6

Например, если в ответе получилась неправильная дробь 27 3 , то можем записать вместо нее 9 , поскольку 27 3 = 27: 3 = 9 .

Ответ: 27 3 = 9 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter